ABSOLUTE CONFIGURATION- DYNAMICAL REFINMENTS

Palatinus, L., et al. “An Incommensurately Modulated Structure of η’-Phase of Cu3+xSi Determined by Quantitative Electron Diffraction Tomography.” Inorganic Chemistry, vol. 50, no. 8, 2011, pp. 3743–51, doi:10.1021/ic200102z.

Palatinus et al   “structural refinement from precession electron diffraction data”  Acta Cryst  (2013) a69, 171-188 doi: 10.1107/S010876731204946X

Palatinus et al “ structural refinement using precession electron diffraction tomography and dynamical diffraction : tests on experimental data” Acta Cryst (2015) B71, 740-751  http:dx.doi.org/10.1107/S2052520615017023 

Palatinus, L., et al. “Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Theory and Implementation.” Acta Crystallographica Section A: Foundations and Advances, vol. 71, 2015, pp. 235–44,doi:10.1107/S2053273315001266.

Ma, Y., et al. “Electron Crystallography for Determining the Handedness of a Chiral Zeolite Nanocrystal.” Nature Materials, vol. 16, no. 7, 2017, pp. 755–59, doi:10.1038/nmat4890. 

McCusker, L. B. “Electron Diffraction and the Hydrogen Atom: Dynamical Refinement with Electron-Diffraction Data Reveals Hydrogen Atom Positions.” Science, vol. 355, no. 6321, 2017, p. 136, doi:10.1126/science.aal4570. 

Palatinus, L., et al. “Hydrogen Positions in Single Nanocrystals Revealed by Electron Diffraction.” Science, vol. 355, no. 6321, 2017, pp. 166–69, doi:10.1126/science.aak9652. 

Brázda, P., et al. “Electron Diffraction Determines Molecular Absolute Configuration in a Pharmaceutical Nanocrystal.” Science, vol. 364, no. 6441, 2019, pp. 667–69, doi:10.1126/science.aaw2560.

ARCHAEOLOGY

Zacharias, N., et al. “A Novelty for Cultural Heritage Material Analysis: Transmission Electron Microscope (TEM) 3D Electron Diffraction Tomography Applied to Roman Glass Tesserae.” Microchemical Journal, vol. 138, Elsevier B.V., 2018, pp. 19–25,doi:10.1016/j.microc.2017.12.023.

S. Nicolopoulos et al “Novel characterization techniques for Cultural Heritage using a TEM orientation imaging in combination with 3D precession diffraction tomography: A case study of green and white ancient Roman glass tesserae” Heritage Science (2018) 6:64,doi:10.1186/s40494-018-0229-7.

Nicolopoulos, S., et al. “Novel TEM Microscopy and Electron Diffraction Techniques to Characterize Cultural Heritage Materials: From Ancient Greek Artefacts to Maya Mural Paintings.” Scanning, vol. 2019, 2019, doi:10.1155/2019/4870695.

INSTRUMENTATION AND TECHNIQUES

Kolb, U., et al. “Towards Automated Diffraction Tomography: Part I-Data Acquisition.” Ultramicroscopy, vol. 107, no. 6–7, 2007, pp. 507–13, doi:10.1016/j.ultramic.2006.10.007.

Kolb, U., et al. “Towards Automated Diffraction Tomography. Part II-Cell Parameter Determination.” Ultramicroscopy, vol. 108, no. 8, 2008, pp. 763–72, doi:10.1016/j.ultramic.2007.12.002.

Mugnaioli, E., et al. “‘Ab Initio’ Structure Solution from Electron Diffraction Data Obtained by a Combination of Automated Diffraction Tomography and Precession Technique.” Ultramicroscopy, vol. 109, no. 6, 2009, pp. 758–65, doi:10.1016/j.ultramic.2009.01.011.

Gorelik, T. E., et al. “Structure Solution with Automated Electron Diffraction Tomography Data: Different Instrumental Approaches.” Journal of Microscopy, vol. 244, no. 3, 2011, pp. 325–31, doi:10.1111/j.1365-2818.2011.03550.x.

U.Kolb et al  “automated electron diffraction tomography-a new tool for nanocrystal structure analysis” Cryst. Res.Techolog. 46, 6, 542-554 (2011) doi:10.1002/crat.201100036

Rius, J., et al. “Application of δ Recycling to Electron Automated Diffraction Tomography Data from Inorganic Crystalline Nanovolumes.” Acta Crystallographica Section A: Foundations of Crystallography, vol. 69, no. 4, 2013, pp.396–407,doi:10.1107/S0108767313009549.

Kolb, U. “The Benefit of Automated Electron Diffraction Tomography (ADT) for Nano Science.” Microscopy and Microanalysis, vol. 19, no. S2, 2013, pp. 318–19, doi:10.1017/s1431927613003589.

Mugnaioli, E.. “Closing the Gap between Electron and X-Ray Crystallography.” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 71, International Union of Crystallography, 2015, pp. 737–39, doi:10.1107/S2052520615022441.

Gemmi, M., et al. “Fast Electron Diffraction Tomography.” Journal of Applied Crystallography, vol. 48, no. i, 2015, pp. 718–27, doi:10.1107/S1600576715004604.

Bowden, D., et al. “A High-Strength Silicide Phase in a Stainless Steel Alloy Designed for Wear-Resistant Applications.” Nature Communications, vol. 9, no. 1, Springer US,2018,pp.1–10,doi:10.1038/s41467-018-03875-9.

Gemmi, M., et al. “3D Electron Diffraction Techniques.” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, International Union of Crystallography, 2019, pp. 495–504, doi:10.1107/S2052520619007510.

Gemmi, M., et al. “3D Electron Diffraction: The Nanocrystallography Revolution.” ACS Central Science, vol. 5, no. 8, 2019, pp. 1315–29, doi:10.1021/acscentsci.9b00394.

Kolb, U., et al. “Automated Electron Diffraction Tomography – Development and Applications.” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, International Union of Crystallography, 2019, pp.463–74,doi:10.1107/S2052520619006711.

Delimitis, A., et al. “Geometry Determination and Refinement in the Rotation Electron Diffraction Technique.” Ultramicroscopy, vol. 201, Elsevier B.V., 2019, pp. 68–76,doi:10.1016/j.ultramic.2019.02.011.

Kodjikian, S., et al. “Low-Dose Electron Diffraction Tomography (LD-EDT).” Ultramicroscopy, vol. 200, no. February, 2019, pp. 12–19, doi:10.1016/j.ultramic.2019.02.010.

Mugnaioli, E., et al. “Structure Analysis of Materials at the Order-Disorder Borderline Using Three-Dimensional Electron Diffraction.” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, International Union of Crystallography, 2019, pp. 550–63, doi:10.1107/S2052520619007339.

Plana-Ruiz, S., et al. “Fast-ADT: A Fast and Automated Electron Diffraction Tomography Setup for Structure Determination and Refinement.” Ultramicroscopy, vol. 211, no. January, Elsevier B.V., 2020, p. 112951, doi:10.1016/j.ultramic.2020.112951.

NANOMATERIALS – SEMICONDUCTORS– OXIDES

Birkel, C. S., et al. “Solution Synthesis of a New Thermoelectric Zn1+ XSb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography.” Journal of the American Chemical Society, vol. 132, no. 28, 2010, pp.9881–89,doi:10.1021/ja1035122.

Sedlmaier, S. J., et al. “SrP3N5O: A Highly Condensed Layer Phosphate Structure Solved from a Nanocrystal by Automated Electron Diffraction Tomography.” Chemistry – A European Journal, vol. 17, no. 40, 2011, pp. 11258–65, doi:10.1002/chem.201101545.

Mugnaioli, E., et al. “Ba6P12N17O9Br3- A Column-Type Phosphate Structure Solved from Single-Nanocrystal Data Obtained by Automated Electron Diffraction Tomography.” European Journal of Inorganic Chemistry, no. 1, 2012, pp. 121–25, doi:10.1002/ejic.201101149.

Sarakinou, E., et al. “Structure Characterization of Hard Materials by Precession Electron Diffraction and Automatic Diffraction Tomography: 6H-SiC Semiconductor and Ni 1+xTe 1embedded Nanodomains.” Semiconductor Science and Technology, vol. 27, no. 10, 2012, doi:10.1088/0268-1242/27/10/105003.

D.Viladot et al , “Hafnium-Silicon precipitate structure determination in a new heat resistant ferritic alloy by precession electron diffraction technique” Microsc. Micoanalysis, 2013 doi:10.1017/S1431927613013627

P.Boullay et al  “precession electron diffraction tomography for solving complex modulated structures : the case of Bi5Nb3O15”  Inorg. Chem.2013, 52, 6127-6135  dx.doi.org/10.1021/ic400529s

Samuha, S., et al. “Atomic Structure Solution of the Complex Quasicrystal Approximant Al77Rh15Ru8 from Electron Diffraction Data.” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 70, no. 6, 2014, pp. 999–1005, doi:10.1107/S2052520614022033.

Hoshyargar, F., et al. “Structure Analysis on the Nanoscale: Closed WS2 Nanoboxes through a Cascade of Topo- and Epitactic Processes.” CrystEngComm, vol. 16, no. 23,2014,pp.5087–92,doi:10.1039/c4ce00326h.

Bhat, S., et al. “High-Pressure Synthesis of Novel Boron Oxynitride B6N4O3 with Sphalerite Type Structure.” Chemistry of Materials, vol. 27, no. 17, 2015, pp. 5907–14, doi:10.1021/acs.chemmater.5b01706.

Mugnaioli, E., et al. “(Na,□)5[MnO2]13 Nanorods: A New Tunnel Structure for Electrode Materials Determined Ab Initio and Refined through a Combination of Electron and Synchrotron Diffraction Data.” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 72, no. 6, 2016, pp. 893–903,doi:10.1107/S2052520616015651.

E.Mugnaioli et al “ (Na &Squ;)5 ( MnO2)13  nanorods: a new tunnel structure for electrode materials determined ab initio and refined through a combination of electron and synchtrotron diffraction data Acta Cryst (2016) B72, 893-903 DOI: 10.1107/S2052520616015651

Tahir, M. N., et al. “Hierachical Ni@Fe2O3 Superparticles through Epitaxial Growth of γ-Fe2O3 Nanorods on: In Situ Formed Ni Nanoplates.” Nanoscale, vol. 8, no. 18, Royal Society of Chemistry, 2016, pp. 9548–55, doi:10.1039/c6nr00065g.

David, J., et al. “Crystal Phases in Hybrid Metal-Semiconductor Nanowire Devices.” Nano Letters, vol. 17, no. 4, 2017, pp. 2336–41, doi:10.1021/acs.nanolett.6b05223.

Zhao, H., et al. “Elucidating Structural Order and Disorder Phenomena in Mullite-Type Al4B2O9 by Automated Electron Diffraction Tomography.” Journal of Solid State Chemistry, vol. 249, February, 2017, pp. 114–23, doi:10.1016/j.jssc.2017.02.023.

Mugnaioli, E., et al. “Ab Initio Structure Determination of Cu2- XTe Plasmonic Nanocrystals by Precession-Assisted Electron Diffraction Tomography and HAADF-STEM Imaging.” Inorganic Chemistry, vol. 57, no. 16, American Chemical Society, 2018, pp. 10241–48, doi:10.1021/acs.inorgchem.8b01445.

Karakulina, O. M., et al. “In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion Batteries.” Nano Letters, vol. 18, no. 10, 2018, pp. 6286–91, doi:10.1021/acs.nanolett.8b02436.

Klein, H., et al. “The Structure of Nano-Twinned Rhombohedral YCuO 2.66 Solved by Electron Crystallography.” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, no. 1, International Union of Crystallography, 2019, pp. 107–12, doi:10.1107/S205252061801627X.

Kaiukov, R., et al. “Cs3Cu4In2Cl13 Nanocrystals: A Perovskite-Related Structure with Inorganic Clusters at A Sites.” Inorganic Chemistry, vol. 59, no. 1, 2020, pp. 548–54,doi:10.1021/acs.inorgchem.9b02834.

Hadermann, J., et al. “Structure Solution and Refinement of Metal-Ion Battery Cathode Materials Using Electron Diffraction Tomography.” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, no. 2019, International Union of Crystallography, 2019, pp. 485–94, doi:10.1107/S2052520619008291.

PROTEINS

Nannenga, B. L., et al. “Protein Structure Determination by MicroED.” Current Opinion in Structural Biology, vol. 27, no. 1, Elsevier Ltd, 2014, pp. 24–31, doi:10.1016/j.sbi.2014.03.004.

Yonekura, K., et al. “Refinement of Cryo-EM Structures Using Scattering Factors of Charged Atoms.” Journal of Applied Crystallography, vol. 49, no. 5, 2016, pp. 1517–23,doi:10.1107/S1600576716011274.

Xu, H., et al. “A Rare Lysozyme Crystal Form Solved Using Highly Redundant Multiple Electron Diffraction Datasets from Micron-Sized Crystals”, Structure, 2018,pp.1–9,doi:10.1016/j.str.2018.02.015.

Nannenga, B. L., et al. “The Evolution and the Advantages of MicroED.” Frontiers in Molecular Biosciences, vol. 5, no. DEC, 2018, pp. 1–5, doi:10.3389/fmolb.2018.00114.

Glynn, C., et al. “Data-Driven Challenges and Opportunities in Crystallography.” Emerging Topics in Life Sciences, vol. 3, no. 4, 2019, pp. 423–32, doi:10.1042/etls20180177.

Nannenga, B. L., et al. “Microcrystal Electron Diffraction Methodology and Applications.” MRS Bulletin, vol. 44, no. 12, 2019, pp. 956–60, doi:10.1557/mrs.2019.287.

Lanza, A., et al. “Nanobeam Precession-Assisted 3D Electron Diffraction Reveals a New Polymorph of Hen Egg-White Lysozyme.” IUCrJ, vol. 6, International Union of Crystallography, 2019, pp. 178–88, doi:10.1107/S2052252518017657.

Zatsepin, N. A., et al. “The Complementarity of Serial Femtosecond Crystallography and MicroED for Structure Determination from Microcrystals.” Current Opinion in Structural Biology, vol. 58, no. Figure 1, Elsevier Ltd, 2019, pp. 286–93, doi:10.1016/j.sbi.2019.06.004.

Nannenga, B. L., et al. “The Cryo-EM Method Microcrystal Electron Diffraction (MicroED).” Nature Methods, vol. 16, no. 5, Springer US, 2019, pp. 369–79, doi:10.1038/s41592-019-0395-x.

Wolff, A. M., et al. “Comparing Serial X-Ray Crystallography and Microcrystal Electron Diffraction ( MicroED ) as Methods for Routine Structure Determination from Small Macromolecular Crystals.” IUCrJ, vol. 7, 2020, pp. 306–23, doi:10.1107/S205225252000072X.

MINERALS-ZEOLITES-MOFS

López-Marino, S., et al. “ZnSe Etching in Zn-Rich Cu2ZnSnSe4 : An Oxidizing Route for Improvement of Solar Cell Efficiency.” Chemistry, A European Journal, vol. 19,no.44,2013,pp.14814–22,doi:10.1002/chem.200.

Gemmi, M., et al. “A New Hydrous Al-Bearing Pyroxene as a Water Carrier in Subduction Zones.” Earth and Planetary Science Letters, vol. 310, no. 3–4, 2011, pp.422–28,doi:10.1016/j.epsl.2011.08.019.

Bellussi, G., et al. “ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity.” Angewandte Chemie – International Edition, vol. 51, no. 3, 2011,pp.666–69,doi:10.1002/anie.201105496.

Jiang, J., et al. “Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43.” Science, vol. 333, no. 6046, 2011, pp. 1131–34, doi:10.1126/science.1208652

Mugnaioli, E., et al. “Ab Initio Structure Determination of Vaterite by Automated Electron Diffraction.” Angewandte Chemie – International Edition, vol. 51, no. 28, 2012,pp.7041–45,doi:10.1002/anie.201200845.

Feyand, M., et al. “Automated Diffraction Tomography for the Structure Elucidation of Twinned, Sub-Micrometer Crystals of a Highly Porous, Catalytically Active Bismuth Metal-Organic Framework.” Angewandte Chemie – International Edition, vol. 51, no. 41, 2012, pp. 10373–76, doi:10.1002/anie.201204963.

Gemmi, M., et al. “Structure of the New Mineral Sarrabusite, Pb 5CuCl 4(SeO 3) 4, Solved by Manual Electron-Diffraction Tomography.” Acta Crystallographica Section B: Structural Science, vol. 68, no. 1, 2012, pp. 15–23, doi:10.1107/S010876811104688X.

Plásil, J., et al. “Crystal Structure of Lead Uranyl Carbonate Mineral Widenmannite: Precession Electron-Diffraction and Synchrotron Powder-Diffraction Study.” American Mineralogist, vol. 99, no. 2–3, 2014, pp. 276–82, doi:10.1515/am.2014.4671.

Cora, I., et al. “Electron Crystallographic Study of a Kaolinite Single Crystal.” Applied Clay Science, vol. 90, Elsevier B.V., 2014, pp. 6–10, doi:10.1016/j.clay.2013.12.034.

Mugnaioli, E., et al. “Evidence of Noncentrosymmetry of Human Tooth Hydroxyapatite Crystals.” Chemistry – A European Journal, vol. 20, no. 23, 2014, pp. 6849–52, doi:10.1002/chem.201402275.

Roussel, P., et al. “Sr4Ru6ClO18, a New Ru4+/5+ Oxy-Chloride, Solved by Precession Electron Diffraction: Electric and Magnetic Behavior.” Journal of Solid State Chemistry, vol. 212, Elsevier, 2014, pp. 99–106, doi:10.1016/j.jssc.2014.01.012.

Koch-Müller, M., et al. “Synthesis of a Quenchable High-Pressure Form of Magnetite (h-Fe3O4) with Composition Fel(Fe2+0.75Mg0.26)Fe2(Fe3+0.70Cr0.15Al0.11Si0.04)2O4.” American Mineralogist, vol. 99, no. 11–12, 2014, pp. 2405–15, doi:10.2138/am-2014-4944.

Capitani, G. C., et al. “The Bi Sulfates from the Alfenza Mine, Crodo, Italy: An Automatic Electron Diffraction Tomography (ADT) Study.” American Mineralogist, vol. 99, no. 2–3, 2014, pp. 500–10, doi:10.1515/am.2014.4446.

Gemmi, M., et al. “Electron Diffraction Determination of 11.5 Å and HySo Structures: Candidate Water Carriers to the Upper Mantle.” American Mineralogist, vol. 101, no. 12, 2016, pp. 2645–54, doi:10.2138/am-2016-5722.

Iezzi, G., et al. “Solid Solution along the Synthetic LiAISi2O6-LiFeSi2O6 (Spodumene-Ferri-Spodumene) Join: A General Picture of Solid Solutions, Bond Lengths, Lattice Strains, Steric Effects, Symmetries, and Chemical Compositions of Li Clinopyroxenes.” American Mineralogist, vol. 101, no. 11, 2016, pp. 2498–513,doi:10.2138/am-2016-5784.

Simancas, J., et al. “Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58.” Journal of the American Chemical Society, vol. 138, no. 32, 2016, pp. 10116–19, doi:10.1021/jacs.6b06394.

Mugnaioli, E., et al. “Determination of Very Beam-Sensitive Zeolite ITQ-57 by Energy-Filtered Timepix Data.” Acta Crystallographica Section A Foundations and Advances, vol. 73, no. a2, 2017, pp. C64–C64, doi:10.1107/s2053273317095067.

Ma, Y., et al. “Electron Crystallography for Determining the Handedness of a Chiral Zeolite Nanocrystal.” Nature Materials, vol. 16, no. 7, 2017, pp. 755–59, doi:10.1038/nmat4890.

Gemmi, M., et al. “Structural Model of Cowlesite by Fast Electron Diffraction Tomography.” Acta Crystallographica Section A Foundations and Advances, vol. 73, 2017, pp. C999–C999, doi:10.1107/s2053273317085758.

Rozhdestvenskaya, I. V., et al. “The Structure of Denisovite, a Fibrous Nanocrystalline Polytypic Disordered ‘very Complex’ Silicate, Studied by a Synergistic Multi-Disciplinary Approach Employing Methods of Electron Crystallography and X-Ray Powder Diffraction.” IUCrJ, vol. 4, no. 100, International Union of Crystallography, 2017, pp. 223–42, doi:10.1107/S2052252517002585.

Németh, P., et al. “A Nanocrystalline Monoclinic CaCO3 Precursor of Metastable Aragonite.” Science Advances, vol. 4, no. 12, 2018, pp. 1–7, doi:10.1126/sciadv.aau6178.

Portolés-Gil, N., et al. “Crystalline Curcumin BioMOF Obtained by Precipitation in Supercritical CO2 and Structural Determination by Electron Diffraction Tomography.” ACS Sustainable Chemistry and Engineering, vol. 6, no. 9, 2018, pp.12309–19,doi:10.1021/acssuschemeng.8b02738.

Rhauderwiek, T., et al. “Highly Stable and Porous Porphyrin-Based Zirconium and Hafnium Phosphonates-Electron Crystallography as an Important Tool for Structure Elucidation.” Chemical Science, vol. 9, no. 24, 2018, pp. 5467–78, doi:10.1039/c8sc01533c.

Mugnaioli, E., and Mauro Gemmi. “Single-Crystal Analysis of Nanodomains by Electron Diffraction Tomography: Mineralogy at the Order-Disorder Borderline.” Zeitschrift Fur Kristallographie – Crystalline Materials, vol. 233, no. 3–4, 2018, pp.163–78,doi:10.1515/zkri-2017-2130.

Bieseki, L., et al. “Synthesis and Structure Determination via Ultra-Fast Electron Diffraction of the New Microporous Zeolitic Germanosilicate ITQ-62.” Chemical Communications, vol. 54, no. 17, 2018, pp. 2122–25, doi:10.1039/c7cc09240g.

Lanza, A. E., et al. “Daliranite, PbHgAs 2 S 5: Determination of the Incommensurately Modulated Structure and Revision of the Chemical Formula.” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, 2019, pp. 711–16, doi:10.1107/S2052520619007340.

Bodach, A., et al. “Electron Diffraction Tomography and X-Ray Powder Diffraction on Photoredox Catalyst PDI.” CrystEngComm, vol. 21, no. 15, Royal Society of Chemistry,2019,pp.2571–75,doi:10.1039/C8CE02026D.

Campanale, F., et al. “Evidence for Subsolidus Quartz-Coesite Transformation in Impact Ejecta from the Australasian Tektite Strewn Field.” Geochimica et Cosmochimica Acta, vol. 264, The Author(s), 2019, pp. 105–17, doi:10.1016/j.gca.2019.08.014.

Roqué, J., et al. “Structural Characterization and Ab-Initio Resolution of Natural Occurring Zaccariniite (RhNiAs) by Means of Precession Electron Diffraction.” Microchemical Journal, vol. 148, no. December 2018, Elsevier, 2019, pp. 130–40, doi:10.1016/j.microc.2019.04.071.

Huang, Z., et al. “Can 3D Electron Diffraction Provide Accurate Atomic Structures of Metal-Organic Frameworks?” Faraday Discussions, 2020, pp. 0–14, doi:10.1039/d0fd00015a.

ORGANIC-PHARMACEUTICALS

Schmidt, M. U., et al. “Electron Diffraction, X-Ray Powder Diffraction and Pair-Distribution- Function Analyses to Determine the Crystal Structures of Pigment Yellow 213, C23H21N5O9.” Acta Crystallographica Section B: Structural Science, vol. 65, no. 2, 2009, pp. 189–99, doi:10.1107/S0108768109003759.

Gorelik, T., et al. “Using Electron Diffraction to Solve the Crystal Structure of a Laked Azo Pigment.” Crystal Growth and Design, vol. 9, no. 9, 2009, pp. 3898–903, doi:10.1021/cg801099r.

Gorelik, T., et al. “H-Bonding Schemes of Di-and Tri-p-Benzamides Assessed by a Combination of Electron Diffraction, X-Ray Powder Diffraction and Solid-State NMR.” CrystEngComm, vol. 12, no. 6, 2010, pp. 1824–32, doi:10.1039/b920569a.

Kolb, U., et al. “Structural Characterization of Organics Using Manual and Automated Electron Diffraction.” Polymer Reviews, vol. 50, no. 3, 2010, pp. 385–409, doi:10.1080/15583724.2010.494238.

Gorelik, T. E., et al. “Ab-Initio Crystal Structure Analysis and Refinement Approaches of Oligo p-Benzamides Based on Electron Diffraction Data.” Acta Crystallographica Section B: Structural Science, vol. 68, no. 2, International Union of Crystallography, 2012, pp. 171–81, doi:10.1107/S0108768112003138.

Gorelik, T. E., et al. “Detecting Crystalline Nonequilibrium Phases on the Nanometer Scale.” Crystal Growth and Design, vol. 12, no. 6, 2012, pp. 3239–42, doi:10.1021/cg300377j.

Van Genderen, E., et al. “Ab Initio Structure Determination of Nanocrystals of Organic Pharmaceutical Compounds by Electron Diffraction at Room Temperature Using a Timepix Quantum Area Direct Electron Detector.” Acta Crystallographica Section A: Foundations and Advances, vol. 72, International Union of Crystallography, 2016,pp.236–42,doi:10.1107/S2053273315022500.

Förster, C., et al. “Crystalline Non-Equilibrium Phase of a Cobalt(II) Complex with Tridentate Ligands.” European Journal of Inorganic Chemistry, vol. 2015, no. 6, 2015,pp.920–24,doi:10.1002/ejic.201403200.

Gorelik, T. E., et al. “Crystal Structure of Disordered Nanocrystalline ΑII-Quinacridone Determined by Electron Diffraction.” CrystEngComm, vol. 18, no. 4, Royal Society of Chemistry, 2016, pp. 529–35, doi:10.1039/c5ce01855b.

Wilke, M., et al. “The Crystallisation of Copper(II) Phenylphosphonates.” Dalton Transactions, vol. 45, no. 43, Royal Society of Chemistry, 2016, pp. 17453–63, doi:10.1039/c6dt02904c.

Wang, Y., et al. “Elucidation of the Elusive Structure and Formula of the Active Pharmaceutical Ingredient Bismuth Subgallate by Continuous Rotation Electron Diffraction.” Chemical Communications, vol. 53, no. 52, 2017, pp. 7018–21, doi:10.1039/c7cc03180g.

Das, P. P., et al. “Crystal Structures of Two Important Pharmaceuticals Solved by 3D Precession Electron Diffraction Tomography.” Organic Process Research and Development, vol. 22, no. 10, American Chemical Society, 2018, pp. 1365–72, doi:10.1021/acs.oprd.8b00149.

Kunde, T., et al. “Microcrystal Electron Diffraction (MicroED) for Small-Molecule Structure Determination.” Angewandte Chemie – International Edition, vol. 58, no. 3,2019,pp.666–68,doi:10.1002/anie.201813215.

Gruene, T., et al. “Rapid Structure Determination of Microcrystalline Molecular Compounds Using Electron Diffraction.” Angewandte Chemie – International Edition, vol. 57, no. 50, 2018, pp. 16313–17, doi:10.1002/anie.201811318.

Clabbers, M. T. B., et al. “Reducing Dynamical Electron Scattering Reveals Hydrogen Atoms.” Acta Crystallographica Section A: Foundations and Advances, vol. 75, no. 1, International Union of Crystallography, 2019, pp. 82–93, doi:10.1107/S2053273318013918.

Jones, C. G., et al. “The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination.” ACS Central Science, vol. 4, no. 11, 2018, pp. 1587–92,doi:10.1021/acscentsci.8b00760.

Jones, C. G., et al. “Characterization of Reactive Organometallic Species via MicroED.” ACS Central Science, vol. 5, no. 9, 2019, pp. 1507–13, doi:10.1021/acscentsci.9b00403.

Broadhurst, E. T., et al. “Polymorph Evolution during Crystal Growth Studied by 3D Electron Diffraction.” IUCrJ, vol. 7, 2020, pp. 5–9, doi:10.1107/S2052252519016105.

Andrusenko, I., et al. “The Crystal Structure of Orthocetamol Solved by 3D Electron Diffraction.” Angewandte Chemie – International Edition, vol. 58, no. 32, 2019, pp.10919–22,doi:10.1002/anie.201904564.

Guzmán-Afonso, C., et al. “Understanding Hydrogen-Bonding Structures of Molecular Crystals via Electron and NMR Nanocrystallography.” Nature Communications, vol. 10, no. 1, Springer US, 2019, pp. 1–10, doi:10.1038/s41467-019-11469-2.

Gemmi, M., et al. “A New Method Based on Electron Diffraction for Detecting Nanoparticles in Injectable Medicines.” Journal of Pharmaceutical Sciences, vol. 109, no. 1, Elsevier Ltd, 2020, pp. 891–99, doi:10.1016/j.xphs.2019.07.008.

To download the content of the Webinar, please fill out the following form: