ASTAR-SEMICONDUCTORS

Ganesh, K.J., et al. “Automated Local Texture and Stress Analysis in Cu Interconnects Using D- STEM and Precession Microscopy.” Microscopy and Microanalysis, vol. 16,no.2,2010,doi:10.1017/S1431927610061933.

Häusler, I., et al. “Crystallite Phase and Orientation Mapping of MnAs in GaAs on the Basis of Automatically Analyzed Precession Electron Diffraction Spot Patterns.” Proc. IMC17, 2010, pp. 2–3, doi:10.1109/NANO.2011.6144300.

Ganesh, K.J., et al. “D-STEM: A Parallel Electron Diffraction Technique Applied to Nanomaterials.” Microscopy and Microanalysis, vol. 16, no. 5, 2010, pp. 614–21, doi:10.1017/S1431927610000334.

Brandstetter, S., et al. “Pattern Size Dependence of Grain Growth in Cu Interconnects.” Scripta Materialia, vol. 63, no. 10, 2010, pp. 965–68, doi:10.1016/j.scriptamat.2010.07.017.

Clement, L., et al. “Microscopy Needs for next Generation Devices Characterization in the Semiconductor Industry.” Journal of Physics: Conference Series, vol. 326, no. 1,2011,doi:10.1088/1742-6596/326/1/012008.

Ganesh, K.J., et al. “Rapid and Automated Grain Orientation and Grain Boundary Analysis in Nanoscale Copper Interconnects.” International Reliability Physics Symposium, vol. 5, no. C, 2011, p. 3, doi:10.1109/IRPS.2011.5784524.

Cao, L., et al. “Analysis of Grain Structure by Precession Electron Diffraction and Effects on Electromigration Reliability of Cu Interconnects.” 2012 IEEE International Interconnect Technology Conference, IITC 2012, 2012, pp. 12–14, doi:10.1109/IITC.2012.6251667.

Estradé, S., et al. “Assessment of Misorientation in Metallic and Semiconducting Nanowires Using Precession Electron Diffraction.” Micron, vol. 43, no. 8, Elsevier Ltd,2012,pp.910–15,doi:10.1016/j.micron.2012.03.003.

Yoo, S. J., et al. “Characterization of Crystallographic Properties of GaN Thin Film Using Automated Crystal Orientation Mapping with TEM.” Metals and Materials International, vol. 18, no. 6, Dec. 2012, pp. 997–1001, doi:10.1007/s12540-012-6011-6.

Häusler, I., et al. “Crystallite Phase and Orientation Determinations of ( Mn , Ga ) As / GaAs- Crystallites Using Analyzed ( Precession ) Electron Diffraction Patterns.” 2012.

Ganesh, K.J., et al. “Effect of Downscaling Nano-Copper Interconnects on the Microstructure Revealed by High Resolution TEM-Orientation-Mapping.” 2012 IEEE International Interconnect Technology Conference, vol. 18, IEEE, 2012, pp. 1–3,doi:10.1109/IITC.2012.6251667.

Cao, L., et al. “Grain Structure Analysis and Effect on Electromigration Reliability in Nanoscale Cu Interconnects.” Applied Physics Letters, vol. 102, no. 13, 2013, pp. 1–5,doi:10.1063/1.4799484.

Darbal, A. D., et al. “Grain Boundary Character Distribution of Nanocrystalline Cu Thin Films Using Stereological Analysis of Transmission Electron Microscope Orientation Maps.” Microscopy and Microanalysis, vol. 19, no. 1, 2013, pp. 111–19,doi:10.1017/S1431927612014055.

Cao, L., et al. “Grain Structure Analysis and Effect on Electromigration Reliability in Nanoscale Cu Interconnects.” Applied Physics Letters, vol. 102, no. 13, 2013, doi:10.1063/1.4799484.

Martinez, M., et al. “Mechanisms of Copper Direct Bonding Observed by In-Situ and Quantitative Transmission Electron Microscopy.” Thin Solid Films, vol. 530, Elsevier B.V., 2013, pp. 96–99, doi:10.1016/j.tsf.2012.02.056.

Galand, R., et al. “Microstructural Void Environment Characterization by Electron Imaging in 45 Nm Technology Node to Link Electromigration and Copper Microstructure.” Microelectronic Engineering, vol. 106, Elsevier B.V., 2013, pp. 168–71,doi:10.1016/j.mee.2013.01.018.

Haas, B., et al. “Microstructural Characterization of Organic Heterostructures by (Transmission) Electron Microscopy.” Crystal Growth and Design, vol. 14, no. 6, 2014,pp.3010–14,doi:10.1021/cg5002896.

Ruiz-Zepeda, F., et al. “Precession Electron Diffraction-Assisted Crystal Phase Mapping of Metastable c-GaN Films Grown on (001) GaAs.” Microscopy Research and Technique, vol. 77, no. 12, 2014, pp. 980–85, doi:10.1002/jemt.22424.

Barmak, K., et al. “Surface and Grain Boundary Scattering in Nanometric Cu Thin Films: A Quantitative Analysis Including Twin Boundaries.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, no. 6, 2014, p. 061503,doi:10.1116/1.4894453.

Zhang, X., et al. “Co Liner Impact on Microstructure of Cu Interconnects.” ECS Journal of Solid State Science and Technology, vol. 4, no. 1, 2015, pp. N3177–79, doi:10.1149/2.0141501jss.

Valery, A., et al. “Dealing With Multiple Grains in TEM Lamellae Thickness for Microstructure Analysis Using Scanning Precession Electron Diffraction.” Microscopy and Microanalysis, vol. 21, no. S3, 2015, pp. 1243–44, doi:10.1017/s143192761500700x.

Hrkac, V., et al. “Structural Study of Growth, Orientation and Defects Characteristics in the Functional Microelectromechanical System Material Aluminium Nitride.” Journal of Applied Physics, vol. 117, no. 1, 2015, doi:10.1063/1.4905109.

Lee, S. Y., et al. “Transmission Orientation Imaging of Copper Thin Films on Polyimide Substrates Intended for Flexible Electronics.” Scripta Materialia, vol. 138, Acta Materialia Inc., 2017, pp. 52–56, doi:10.1016/j.scriptamat.2017.05.037.

ASTAR & 3D DIFFRACTION TOMOGRAPHY

Baraldi, A., et al. “Eu Incorporation into Sol-Gel Silica for Photonic Applications: Spectroscopic and TEM Evidences of α-Quartz and Eu Pyrosilicate Nanocrystal Growth.” Journal of Physical Chemistry C, vol. 117, no. 50, 2013, pp. 26831–48, doi:10.1021/jp4101174.

Singh, V., et al. “Microstructural Characterization by Automated Crystal Orientation and Phase Mapping by Precession Electron Diffraction in TEM: Application to Hot Deformation of a Î3-TiAl-Based Alloy.” Microscopy and Microanalysis, 2019, pp. 1–9,doi:10.1017/S1431927619000394.

Roqué, J., et al. “Structural Characterization and Ab-Initio Resolution of Natural Occurring Zaccariniite (RhNiAs) by Means of Precession Electron Diffraction.” Microchemical Journal, vol. 148, no. December 2018, Elsevier, 2019, pp. 130–40, doi:10.1016/j.microc.2019.04.071.

Sarkar, R., et al. “Structure and Orientation of an Intermetallic Phase in a W-Ni-Co Alloy.” Philosophical Magazine, vol. 99, no. 10, Taylor & Francis, 2019, pp. 1240–58,doi:10.1080/14786435.2019.1579376.

ASTAR & HREM

Rauch, E. F., et al. “High Throughput Automated Crystal Orientation and Phase Mapping of Nanoparticles from Hrem – Tem Images.” Microscopy and Microanalysis, vol. 15, no. SUPPL. 2, 2009, pp. 756–57, doi:10.1017/S1431927609099607.

Soulas, R., et al. “TEM Investigations of the Oxide Layers Formed on a 316L Alloy in Simulated PWR Environment.” Journal of Materials Science, vol. 48, no. 7, 2013, pp.2861–71,doi:10.1007/s10853-012-6975-0.

ASTAR- 4D SPED

Valery, A., et al. “Dealing With Multiple Grains in TEM Lamellae Thickness for Microstructure Analysis Using Scanning Precession Electron Diffraction.” Microscopy and Microanalysis, vol. 21, no. S3, 2015, pp. 1243–44, doi:10.1017/s143192761500700x.

Eggeman, A. S., et al. “Scanning Precession Electron Tomography for Three-Dimensional Nanoscale Orientation Imaging and Crystallographic Analysis.” Nature Communications, vol. 6, Nature Publishing Group, 2015, pp. 1–7, doi:10.1038/ncomms8267.

Sunde, J. K., et al. “Phase Mapping of 2xxx-Series Aluminium Alloys by Scanning Precession Electron Diffraction.” 2016, doi:10.1002/9783527808465.EMC2016.5248.

Ortega, E., et al. “Structural Damage Reduction in Protected Gold Clusters by Electron Diffraction Methods.” Advanced Structural and Chemical Imaging, vol. 2, no. 1, Springer International Publishing, 2016, doi:10.1186/s40679-016-0026-x.

Bruma, A., et al. “Structure Determination of Superatom Metallic Clusters Using Rapid Scanning Electron Diffraction.” Journal of Physical Chemistry C, vol. 120, no. 3, 2016,pp.1902–08,doi:10.1021/acs.jpcc.5b09524.

Kobler, A., et al. “Challenges in Quantitative Crystallographic Characterization of 3D Thin Films by ACOM-TEM.” Ultramicroscopy, vol. 173, Elsevier, 2016, pp. 84–94,doi:10.1016/j.ultramic.2016.07.007.

Valery, A., et al. “Retrieving Overlapping Crystals Information from TEM Nano-Beam Electron Diffraction Patterns.” Journal of Microscopy, vol. 268, no. 2, 2017, pp. 208–18,doi:10.1111/jmi.12599.

Johnstone, D. N., et al. “The Microstructure of Pharmaceutical Materials Revealed by Scanning Electron Diffraction.” Microscopy and Microanalysis, vol. 23, no. S1, 2017,pp.1192–93,doi:10.1017/s1431927617006626.

Kobler, A., et al. “Towards 3D Crystal Orientation Reconstruction Using Automated Crystal Orientation Mapping Transmission Electron Microscopy (ACOM-TEM).” Beilstein Journal of Nanotechnology, vol. 9, no. 1, 2018, pp. 602–07, doi:10.3762/bjnano.9.56.

Nord, M., et al. “Fast Pixelated Detectors in Scanning Transmission Electron Microscopy. Part I: Data Acquisition, Live Processing and Storage”. 2019, http://arxiv.org/abs/1911.11560 .

Zhao, H., et al. “Geometrical Constraints on the Bending Deformation of Penta-Twinned Silver Nanowires.” Acta Materialia, vol. 185, Elsevier Ltd, 2020, pp. 110–18,doi:10.1016/j.actamat.2019.11.058.

Rauch, E. F., et al. “Methods for Orientation and Phase Identification of Nano-Sized Embedded Secondary Phase Particles by 4D Scanning Precession Electron Diffraction.” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, 2019, pp. 505–11, doi:10.1107/S2052520619007583.

Christiansen, E., et al. “Nano-Scale Characterisation of Sheared β” Precipitates in a Deformed Al-Mg-Si Alloy.” Scientific Reports, vol. 9, no. 1, 2019, pp. 1–11, doi:10.1038/s41598-019-53772-4.

Rauch, E. F., et al. “Revealing Embedded Crystals through Their Diffracting Signals in Transmission Electron Microscopy.” Microscopy and Microanalysis, vol. 25, no. S2,2019,pp.1922–23,doi:10.1017/s1431927619010341.

Eggeman, A. S. “Scanning Transmission Electron Diffraction Methods.” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, International Union of Crystallography, 2019, pp. 475–84, doi:10.1107/S2052520619006723.

Martineau, B. H., et al. “Unsupervised Machine Learning Applied to Scanning Precession Electron Diffraction Data.” Advanced Structural and Chemical Imaging, vol. 5, no. 1, Springer International Publishing, 2019, doi:10.1186/s40679-019-0063-3.

ASTAR – INSTRUMENTATION & TECHNIQUES

Rauch, E. F., et al. “Coupled Microstructural Observations and Local Texture Measurements with an Automated Crystallographic Orientation Mapping Tool Attached to a Tem.” Materialwissenschaft Und Werkstofftechnik, vol. 36, no. 10, 2005,pp.552–56,doi:10.1002/mawe.200500923.

Rauch, E. F., et al. “Orientation Maps Derived from TEM Diffraction Patterns Collected with an External CCD Camera.” Materials Science Forum, vol. 495–497, 2005, pp. 197–202, doi:10.4028/www.scientific.net/msf.495-497.197.

Rauch, E. F., et al. “Rapid Spot Diffraction Patterns Identification through Template Matching.” Archives of Metallurgy and Materials, vol. 50, no. 1, 2005, pp. 87–99, Id. YADDA: bwmeta1.element.baztech-article-BSW3-0014-0019.

Rauch, E. F., et al. “Comments on ‘on the Reliability of Fully Automatic Indexing of Electron Diffraction Patterns Obtained in a Transmission Electron Microscope’ by Morawiec & Bouzy (2006).” Journal of Applied Crystallography, vol. 39, no. 1, 2006,pp.104–05,doi:10.1107/S0021889805033157.

Rauch, E. F., et al. “Automatic Crystal Orientation and Phase Mapping in TEM by Precession Diffraction.” Microscopy and Analysis, vol. 22, no. 6, 2008, pp. S5–8, http://www.microscopy-analysis.com/sites/default/files/magazine_pdfs/mag 2008_November_Rauch.pdf.

Rouvimov, S., et al. “Automated Crystal Orientation and Phase Mapping of Iron-Oxide Nanocrystals in a Transmission Electron Microscope.” 2009 International Semiconductor Device Research Symposium, ISDRS ’09, 2009, pp. 2–5, doi:10.1109/ISDRS.2009.5378049.

Moeck, P., et al. “Structural Fingerprinting of Nanocrystals: Advantages of Precession Electron Diffraction, Automated Crystallite Orientation and Phase Maps.” Materials Research Society Symposium Proceedings, vol. 1184, 2009, pp. 49–60, doi:10.1557/proc-1184-gg03-07.

Rauch, E. F., et al. “Automated Nanocrystal Orientation and Phase Mapping in the Transmission Electron Microscope on the Basis of Precession Electron Diffraction.” Zeitschrift Fur Kristallographie, vol. 225, no. 2–3, 2010, pp. 103–09, doi:10.1524/zkri.2010.1205.

Rouvimov, S., et al.. “Crystallographic Characterization of Polycrystalline Materials: High Resolution Automated Crystallite Orientation & Phase Mapping and Precession Electron Diffraction Ring Patterns.” Microscopy and Microanalysis, vol. 16, no. 2, 2010, pp. 768–769, doi:10.1017/s1431927610059052.

Rauch, E. F., and M. Véron. “Improving Angular Resolution of the Crystal Orientation Determined with Spot Diffraction Patterns.” Microscopy and Microanalysis, vol. 16, no. S2, 2010, pp. 770–71, doi:10.1017/s1431927610059593.

Portillo, J., et al. “Precession Electron Diffraction Assisted Orientation Mapping in the Transmission Electron Microscope.” Materials Science Forum, vol. 644, 2010, pp. 1–7,doi:10.4028/www.scientific.net/MSF.644.1.

Rouvimov, S., et al. “Automated Crystallite Orientation & Phase Mapping in the TEM: Diffraction Contrast in Virtual Bright/Dark Field Images of Polycrystalline Copper.” Microscopy and Microanalysis, vol. 17, no. S2, 2011, pp. 1098–99, doi:10.1017/s1431927611006362.

Pavia, G., et al. “Crystal Orientation Mapping via STEM/NBD: Improved Quality with Precession Electron Diffraction and Energy Filtering.” Microscopy and Microanalysis, vol. 17, no. S2, 2011, pp. 1074–75, doi:10.1017/s1431927611006246.

Moeck, P., et al. “High Spatial Resolution Semi-Automatic Crystallite Orientation and Phase Mapping of Nanocrystals in Transmission Electron Microscopes.” Crystal Research and Technology, vol. 46, no. 6, 2011, pp. 589–606, doi:10.1002/crat.201000676.

Veron, M., et al. “Novel Electron Diffraction Technique for Texture Analysis (Orientation & Phase Mapping) of Organic Nanocrystals.” PXRD 10 Workshop for Pharmaceutical Applications, 2011.

Moeck, P., et al. “Precession Electron Diffraction & Automated Crystallite Orientation/Phase Mapping in a Transmission Electron Microscope.” Proceedings of the IEEE Conference on Nanotechnology, 2011, pp. 754–59, doi:10.1109/NANO.2011.6144300.

Darbal, A. D., et al. “Nanoscale Automated Phase and Orientation Mapping in the TEM.” Microscopy Today, vol. 20, no. 6, 2012, pp. 38–42, doi:10.1017/s1551929512000818.

Nicolopoulos, S., et al. “Novel EBSD-TEM like Technique: Texture Analysis, Orientation and Phase Maps on Nanostructured Materials.” EMAS 2012 – 10th Regional Workshop on Electron Probe Microanalysis Today – Practical Aspects, 2012, http://www.lem3.fr/beausir/Benoit/papers/NRV12.pdf.

Rauch, E. F., et al. “Orientation and Phase Mapping in TEM Microscopy (EBSD-TEM like): Applications to Materials Science.” Solid State Phenomena, vol. 186, 2012, pp.13–15,doi:10.4028/www.scientific.net/ssp.186.13.

Viladot, D., et al. “Orientation and Phase Mapping in the Transmission Electron Microscope Using Precession-Assisted Diffraction Spot Recognition: State-of-the-Art Results.” Journal of Microscopy, vol. 252, no. 1, 2013, pp. 23–34, doi:10.1111/jmi.12065.

Brons, J. G., et al. “Orientation Mapping via Precession-Enhanced Electron Diffraction and Its Applications in Materials Science.” Jom, vol. 66, no. 1, 2014, pp. 165–70, doi:10.1007/s11837-013-0799-5.

Rauch, E. F., et al. “Solving the 180 Degree Orientation Ambiguity Related to Spot Diffraction Patterns in Transmission Electron Microscopy.” Microscopy and Microanalysis, vol. 19, no. S2, 2013, pp. 324–25, doi:10.1017/s1431927613003619.

Rauch, E. F., et al. “Automated Crystal Orientation and Phase Mapping in TEM.” Materials Characterization, vol. 98, Elsevier Inc., 2014, pp. 1–9, doi:10.1016/j.matchar.2014.08.010.

Rollett, A. D., et al. “Orientation Mapping.” Physical Metallurgy: Fifth Edition, Fifth Edition, vol. 1, Elsevier B.V., 2014, doi:10.1016/B978-0-444-53770-6.00011-3.

Kiss, Á. K., et al. “A Tool for Local Thickness Determination and Grain Boundary Characterization by CTEM and HRTEM Techniques.” Microscopy and Microanalysis, vol. 21, no. 2, 2015, pp. 422–35, doi:10.1017/S1431927615000112.

Ruiz-Zepeda, F., et al.. “Electron Diffraction and Crystal Orientation Phase Mapping Under Scanning Transmission Electron Microscopy.” Advanced Transmission Electron Microscopy: Applications to Nanomaterials, 2015, pp. 31–58, doi:10.1007/978-3-319-15177-9_2.

Rauch, E. F., and M. Véron. “Crystal Orientation Angular Resolution with Precession Electron Diffraction.” Microscopy and Microanalysis, vol. 22, no. S3, 2016, pp. 500–01,doi:10.1017/s1431927616003354.

Weiss, J., et al. “Microstructure Characterization of Nanoscale Materials and Interconnects.” Metrology and Diagnostic Techniques for Nanoelectronics, vol. 8, 2016, p. 447-492. ISBN-13: 978-9814745086;

Mu, X., et al. “Radial Distribution Function Imaging by STEM Diffraction: Phase Mapping and Analysis of Heterogeneous Nanostructured Glasses.” Ultramicroscopy, vol. 168, Elsevier, 2016, pp. 1–6, doi:10.1016/j.ultramic.2016.05.009.

Rauch, E., et al. “Reflection Profile and Angular Resolution with Precession Electron Diffraction.” European Microscopy Congress 2016: Proceedings, vol. 98, no. 1, 2016,pp.665–66,doi:10.1002/EMC2016.0873.

Barnard, J. S., et al. “High-Resolution Scanning Precession Electron Diffraction: Alignment and Spatial Resolution.” Ultramicroscopy, vol. 174, no. December 2016, Elsevier, 2017, pp. 79–88, doi:10.1016/j.ultramic.2016.12.018.

Nikolopoulos, S., et al. “Random Electron Diffraction Tomography for Structure Analysis of Pharmaceuticals.” Acta Crystallographica, 2017, A73,C980 https://doi.org/10.1107/s2053273317085941

Valery, A., et al. “TEM Illumination Settings Study for Optimum Spatial Resolution and Indexing Reliability in Crystal Orientation Mappings.” Micron, vol. 92, Elsevier Ltd, 2017, pp. 43–50, doi:10.1016/j.micron.2016.11.003.

ASTAR VDF (VIRTUAL DARK FIELD) – AMORPHOUS DETECTION

Rauch, E. F., et al. “Analyzing Dislocations with Virtual Dark Field Images Reconstructed from Electron Diffraction Patterns.” Microscopy and Microanalysis, vol. 20, no. 3, 2014, pp. 1456–57, doi:10.1017/S1431927614009015.

Boulay, E., et al. “Influence of Amorphous Phase Separation on the Crystallization Behavior of Glass-Ceramics in the BaO-TiO2-SiO2 System.” Journal of Non-Crystalline Solids, vol. 384, no. 2014, 2014, pp. 61–72, doi:10.1016/j.jnoncrysol.2013.06.023.

Rauch, E. F., et al.. “Virtual Dark-Field Images Reconstructed from Electron Diffraction Patterns.” EPJ Applied Physics, vol. 66, no. 1, 2014, pp. 1–5, doi:10.1051/epjap/2014130556.

Kiss, Á. K., et al. “Highlighting Material Structure with Transmission Electron Diffraction Correlation Coefficient Maps.” Ultramicroscopy, vol. 163, Elsevier, 2016,pp.31–37,doi:10.1016/j.ultramic.2016.01.006.

Hart, M. J., et al. “Medium Range Structural Order in Amorphous Tantala Spatially Resolved with Changes to Atomic Structure by Thermal Annealing.” Journal of Non-Crystalline Solids, vol. 438, The Authors, 2016, pp. 10–17, doi:10.1016/j.jnoncrysol.2016.02.005.

Sunde, J. K., et al. “Scanning Precession Electron Diffraction Study of Hybrid Precipitates in a 6xxx Series Aluminium Alloy.” Microscopy and Microanalysis, vol. 23, no. S1, 2017, pp. 114–15, doi:10.1017/s1431927617001258.

Guo, W., et al. “Extremely Hard Amorphous-Crystalline Hybrid Steel Surface Produced by Deformation Induced Cementite Amorphization.” Acta Materialia, vol. 152, Acta Materialia Inc., 2018, pp. 107–18, doi:10.1016/j.actamat.2018.04.013.

ASTAR – BATTERIES & ENERGY

Brunetti, G., et al. “Confirmation of the Domino-Cascade Model by Lifepo4/Fepo 4 Precession Electron Diffraction.” Chemistry of Materials, vol. 23, no. 20, 2011, pp. 4515–24,doi:10.1021/cm201783z.

Bayle-Guillemaud, P., et al. “Phase Mapping of Nanopowders for Li-Ion Batteries.” http://www.emc2012.org.uk/documents/Abstracts/Abstracts/EMC2012_0786.pdf.

Botta, W. J., et al. “H-Sorption Properties and Structural Evolution of Mg Processed by Severe Plastic Deformation.” Journal of Alloys and Compounds, vol. 580, no. SUPPL1, Elsevier B.V., 2013, pp. S187–91, doi:10.1016/j.jallcom.2013.03.013.

Mu, X., et al. “Comprehensive Analysis of TEM Methods for LiFePO4/FePO4 Phase Mapping: Spectroscopic Techniques (EFTEM, STEM-EELS) and STEM Diffraction Techniques (ACOM-TEM).” Ultramicroscopy, vol. 170, 2016, pp. 10–18,doi:10.1016/j.ultramic.2016.07.009.

ASTAR – HOLOGRAPHY

Cantu-Valle, J., et al. “Mapping the Magnetic and Crystal Structure in Cobalt Nanowires.” Journal of Applied Physics, vol. 118, no. 2, 2015, doi:10.1063/1.4923745.

Ortega, E., et al. “In-Situ Magnetization/Heating Electron Holography to Study the Magnetic Ordering in Arrays of Nickel Metallic Nanowires.” AIP Advances, vol. 8, no.5,2018,pp.1–5,doi:10.1063/1.5007671.

I.M.Andersen et al “Exotic transverse-vortex magnetic configurations in CoNi Nanowires” ACS Nano doi:10.1021/acsnano.9b07448

ASTAR – METALLURGY & PLASTICITY

Rauch, E. F. “Plastic Behavior of Metals at Large Strains: Experimental Studies Involving Simple Shear.” Journal of Engineering Materials and Technology. vol. 131, no. 1, 2009, pp. 0111071–78, doi:10.1115/1.3030942.

Descartes, S., et al. “Inhomogeneous Microstructural Evolution of Pure Iron during High-Pressure Torsion.” Materials Science and Engineering A, vol. 528, no. 10–11, 2011, pp. 3666–75, doi:10.1016/j.msea.2011.01.029.

Zhang, Z., et al. “A Critical Test of Twin-Induced Softening in a Magnesium Alloy Extruded to a Strain of 0.7 at Room Temperature.” Scripta Materialia, vol. 67, no. 12, Acta Materialia Inc., 2012, pp. 1015–18, doi:10.1016/j.scriptamat.2012.09.021.

Companhoni, M. V. P., et al. “Analysis of Microstructure and Microhardness of Zr-2.5Nb Processed by High-Pressure Torsion (HPT).” Journal of Materials Science, vol. 47, no. 22, 2012, pp. 7835–40, doi:10.1007/s10853-012-6454-7.

Mompiou, F., et al. “In Situ TEM Observation of Grain Annihilation in Tricrystalline Aluminum Films.” Acta Materialia, vol. 60, no. 5, Acta Materialia Inc., 2012, pp. 2209–18,doi:10.1016/j.actamat.2011.12.013.

Cepeda-Jiménez, C. M., et al. “Influence of Processing Severity during Equal-Channel Angular Pressing on the Microstructure of an Al-Zn-Mg-Cu Alloy.” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 43, no. 11, 2012, pp. 4224–36, doi:10.1007/s11661-012-1206-5.

Stróz, D., et al. “Nanotexture Studies of NiTi Shape Memory Alloy after Severe Plastic Deformation with the Use of TEM.” Solid State Phenomena, vol. 186, 2012, pp. 90–93,doi:10.4028/www.scientific.net/SSP.186.90.

Cizek, P., et al. “Observation of (Sub)Grain Clusters in the as-Deposited and in Situ Annealed Nanocrystalline Nickel Using Automated Crystal Orientation Mapping.” Scripta Materialia, vol. 67, no. 7–8, Acta Materialia Inc., 2012, pp. 685–88, doi:10.1016/j.scriptamat.2012.07.003.

Rauch, E. F., et al.. “The Structural State of Severely Deformed Materials Analysed with a Transmission Electron Microscope.” International Symposium on Plastic Deformation and Texture Analysis, 2012, https://hal.archives-ouvertes.fr/hal-00801744.

Jorge, A. M., et al. “An Investigation of Hydrogen Storage in a Magnesium-Based Alloy Processed by Equal-Channel Angular Pressing.” International Journal of Hydrogen Energy, vol. 38, no. 20, 2013, pp. 8306–12, doi:10.1016/j.ijhydene.2013.03.158.

Brons, J. G., et al. “Cryogenic Indentation-Induced Grain Growth in Nanotwinned Copper.” Scripta Materialia, vol. 68, no. 10, 2013, pp. 781–84, doi:10.1016/j.scriptamat.2012.12.026.

Morris Wang, Y., et al. “Defective Twin Boundaries in Nanotwinned Metals.” Nature Materials, vol. 12, no. 8, Nature Publishing Group, 2013, pp. 697–702, doi:10.1038/nmat3646.

Wen, M., et al. “Microstructural Characteristics of a Nanoeutectic Ag-Cu Alloy Processed by Surface Mechanical Attrition Treatment.” Scripta Materialia, vol. 68, no. 7, Acta Materialia Inc., 2013, pp. 499–502, doi:10.1016/j.scriptamat.2012.11.033.

Švec, P., et al. “Phase Mapping of Iron-Based Rapidly Quenched Alloys Using Precession Electron Diffraction.” 2013.

Idell, Y., et al. “Strengthening of Austenitic Stainless Steel by Formation of Nanocrystalline γ-Phase through Severe Plastic Deformation during Two-Dimensional Linear Plane-Strain Machining.” Scripta Materialia, vol. 68, no. 9, 2013,pp.667–70,doi:10.1016/j.scriptamat.2013.01.025.

Tzedaki, M., et al. “Structure and Formation Mechanism of Rolled-in Oxide Areas on Aluminum Lithographic Printing Sheets.” Scripta Materialia, vol. 68, no. 5, Acta Materialia Inc., 2013, pp. 233–36, doi:10.1016/j.scriptamat.2012.10.021.

Dasgupta, A., et al. “Structure of Grains and Grain Boundaries in Cryo-Mechanically Processed Ti Alloy.” Journal of Materials Science, vol. 48, no. 13, 2013, pp. 4592–98,doi:10.1007/s10853-013-7190-3.

Zhang, Z., et al. “TEM Based Micro-Texture Measurement for Twinning in a Hot-Rolled Magnesium Alloy with Astar System.” Microscopy and Microanalysis, vol. 19, no. S2, 2013, pp. 736–37, doi:10.1017/s1431927613005679.

Ning, J., et al. “Tensile Properties and Work Hardening Behaviors of Ultrafine Grained Carbon Steel and Pure Iron Processed by Warm High Pressure Torsion.” Materials Science and Engineering A, vol. 581, Elsevier, 2013, pp. 8–15, https://doi.org/10.1016/j.msea.2013.05.008

Lagrange, T., et al. “Topological View of the Thermal Stability of Nanotwinned Copper.” Applied Physics Letters, vol. 102, no. 1, 2013, doi:10.1063/1.4772589.

Barr, C. M., et al. “Anisotropic Radiation-Induced Segregation in 316L Austenitic Stainless Steel with Grain Boundary Character.” Acta Materialia, vol. 67, Acta Materialia Inc., 2014, pp. 145–55, doi:10.1016/j.actamat.2013.11.060.

Ghamarian, I., et al. “Development and Application of a Novel Precession Electron Diffraction Technique to Quantify and Map Deformation Structures in Highly Deformed Materials – As Applied to Ultrafine-Grained Titanium.” Acta Materialia, vol. 79, 2014, pp. 203–15, doi:10.1016/j.actamat.2014.06.063.

Scotto D’Antuono, D., et al. “Grain Boundary Misorientation Dependence of β Phase Precipitation in an Al-Mg Alloy.” Scripta Materialia, vol. 76, Acta Materialia Inc., 2014, pp. 81–84, doi:10.1016/j.scriptamat.2014.01.003.

Krakow, R., et al. “High Resolution Orientation Mapping of Secondary Phases in ATI 718Plus® Alloy.” MATEC Web of Conferences, vol. 14, 2014, pp. 0–4, doi:10.1051/matecconf/20141411002.

Francis, E. M., et al. “Iron Redistribution in a Zirconium Alloy after Neutron and Proton Irradiation Studied by Energy-Dispersive X-Ray Spectroscopy (EDX) Using an Aberration-Corrected (Scanning) Transmission Electron Microscope.” Journal of Nuclear Materials, vol. 454, no. 1, Elsevier B.V., 2014, pp. 387–97, doi:10.1016/j.jnucmat.2014.08.034.

Theuwissen, K., et al. “Nano-Scale Orientation Mapping of Graphite in Cast Irons.” Materials Characterization, vol. 95, Elsevier Inc., 2014, pp. 187–91, doi:10.1016/j.matchar.2014.06.021.

Lilensten, L., et al. “New Structure in Refractory High-Entropy Alloys.” Materials Letters, vol. 132, no. September 2015, 2014, pp. 123–25, doi:10.1016/j.matlet.2014.06.064.

Idrissi, H., et al. “Plasticity Mechanisms in Ultrafine Grained Freestanding Aluminum Thin Films Revealed by In-Situ Transmission Electron Microscopy Nanomechanical Testing.” Applied Physics Letters, vol. 104, no. 10, 2014, doi:10.1063/1.4868124.

Brons, J. G., et al. “The Role of Copper Twin Boundaries in Cryogenic Indentation-Induced Grain Growth.” Materials Science and Engineering A, vol. 592, Elsevier, 2014,pp.182–88,doi:10.1016/j.msea.2013.11.005.

Sun, F., et al. “A New Titanium Alloy with a Combination of High Strength, High Strain Hardening and Improved Ductility.” Scripta Materialia, vol. 94, Acta Materialia Inc., 2015, pp. 17–20, doi:10.1016/j.scriptamat.2014.09.005.

Harte, A., et al. “Advances in Synchrotron X-Ray Diffraction and Transmission Electron Microscopy Techniques for the Investigation of Microstructure Evolution in Proton- and Neutron-Irradiated Zirconium Alloys.” Journal of Materials Research, vol. 30, no. 9, 2015, pp. 1349–65, doi:10.1557/jmr.2015.65.

Liu, Y., et al. “Discovery via Integration of Experimentation and Modeling: Three Examples for Titanium Alloys.” Jom, vol. 67, no. 1, 2015, pp. 164–78, doi:10.1007/s11837-014-1197-3.

Leff, A. C., et al. “Estimation of Dislocation Density from Precession Electron Diffraction Data Using the Nye Tensor.” Ultramicroscopy, vol. 153, Elsevier, 2015,pp.9–21,doi:10.1016/j.ultramic.2015.02.002.

Stráská, J., et al. “Evolution of Microstructure and Hardness in AZ31 Alloy Processed by High Pressure Torsion.” Materials Science and Engineering A, vol. 625, 2015, pp. 98–106, https://doi.org/10.1016/j.msea.2014.12.005

Wang, W., et al. “Formation of Annealing Twins during Primary Recrystallization of Two Low Stacking Fault Energy Ni-Based Alloys.” Journal of Materials Science, vol. 50, no. 5, 2015, pp. 2167–77, doi:10.1007/s10853-014-8780-4.

Aebersold, A. B., et al. “Height-Resolved Quantification of Microstructure and Texture in Polycrystalline Thin Films Using TEM Orientation Mapping.” Ultramicroscopy, vol. 159, no. P1, Elsevier, 2015, pp. 112–23, doi:10.1016/j.ultramic.2015.08.005.

Mohseni, H., et al. “In Situ Nitrided Titanium Alloys: Microstructural Evolution during Solidification and Wear.” Acta Materialia, vol. 83, Acta Materialia Inc., 2015, pp. 61–74,doi:10.1016/j.actamat.2014.09.026.

Dewaele, A., et al. “Mechanism of the α-ε Phase Transformation in Iron.” Physical Review B – Condensed Matter and Materials Physics, vol. 91, no. 17, 2015, pp. 1–8,doi:10.1103/PhysRevB.91.174105.

Zha, M., et al. “Microstructure Evolution and Mechanical Behavior of a Binary Al-7Mg Alloy Processed by Equal-Channel Angular Pressing.” Acta Materialia, vol. 84, Acta Materialia Inc., 2015, pp. 42–54, doi:10.1016/j.actamat.2014.10.025.

Bai, M., et al. “Microtexture Analysis of the Alumina Scale in Thermal Barrier Coatings.” Journal of the American Ceramic Society, vol. 98, no. 12, 2015, pp. 3639–42,doi:10.1111/jace.13945.

Bober, D. B., et al. “Nanocrystalline Grain Boundary Engineering: Increasing Σ3 Boundary Fraction in Pure Ni with Thermomechanical Treatments.” Acta Materialia, vol. 86, Acta Materialia Inc., 2015, pp. 43–54, doi:10.1016/j.actamat.2014.11.034.

Sallez, N., et al. “On Ball-Milled ODS Ferritic Steel Recrystallization: From as-Milled Powder Particles to Consolidated State.” Journal of Materials Science, vol. 50, no. 5,2015,pp.2202–17,doi:10.1007/s10853-014-8783-1.

Kobler, A., et al. “Orientation Dependent Fracture Behavior of Nanotwinned Copper.” Applied Physics Letters, vol. 106, no. 26, 2015, pp. 1–6, doi:10.1063/1.4923398.

Ktari, H. H., et al. “Orientation Imaging- ASTAR Investigation of the Grain and Precipitate Morphology in Al-Cu-Mg Alloy Processed by Equal Channel Angular Pressing.” Journal of Alloys and Compounds, vol. 647, Elsevier B.V, 2015, pp. 152–58,doi:10.1016/j.jallcom.2015.06.157.

Feng, Z. Q., et al. “Precession Electron Diffraction Assisted Orientation Mapping of Gradient Nanostructure in a Ni-Based Superalloy.” IOP Conference Series: Materials Science and Engineering, vol. 89, no. 1, 2015, doi:10.1088/1757-899X/89/1/012023.

Afonso, C. R. M., et al. “Advanced Microstructure Characterization of β Ti-Nb-Ta-Fe Alloys Obtained by Powder Metallurgy.” European Microscopy Congress 2016: Proceedings, no. 1, 2016, pp. 388–89, https://doi.org/10.1002/9783527808465.EMC2016.7040

Hirakami, D., et al. “Effect of Aging Treatment on Hydrogen Embrittlement of Drawn Pearlitic Steel Wire.” Journal of the Iron and Steel Institute of Japan, vol. 56, no. 5, 2016, pp. 896–98, doi: 10.2355/isijinternational.isijint-2015-735.

Darling, K. A., et al. “Extreme Creep Resistance in a Microstructurally Stable Nanocrystalline Alloy.” Nature, vol. 537, no. 7620, Nature Publishing Group, 2016,pp.378–81,doi:10.1038/nature19313.

Zhou, X., et al. “Grain Boundary Specific Segregation in Nanocrystalline Fe(Cr).” Scientific Reports, vol. 6, no. September, Nature Publishing Group, 2016, pp. 1–14,doi:10.1038/srep34642.

Lim, Y. S., et al. “Intergranular Oxidation of Ni-Based Alloy 600 in a Simulated PWR Primary Water Environment.” Corrosion Science, vol. 108, Elsevier Ltd, 2016, pp. 125–33,doi:10.1016/j.corsci.2016.02.040.

Yao, X., et al. “Optimization of Automated Crystal Orientation Mapping in a TEM for Ni4Ti3 Precipitation in All-Round SMA.” Shape Memory and Superelasticity, vol. 2, no. 4, Springer International Publishing, 2016, pp. 286–97, doi:10.1007/s40830-016-0082-z.

Zangiabadi, A., et al. “The Formation of Martensitic Austenite During Nitridation of Martensitic and Duplex Stainless Steels.” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 48, no. 1, Springer US, 2017, pp. 8–13, doi:10.1007/s11661-016-3853-4.

Hirakami, D., et al. “Change in the Microstructure and Mechanical Properties of Drawn Pearlitic Steel with Low-Temperature Aging.” IOP Conference Series: Materials Science and Engineering, vol. 219, no. 1, 2017, doi:10.1088/1757-899X/219/1/012026.

Suri, P. K., et al. “Defect Characterization in Irradiated Nanocrystalline Materials via Automated Crystal Orientation Mapping.” Microscopy and Microanalysis, vol. 23, no. S1, 2017, pp. 2236–37, doi:10.1017/s1431927617011849.

Rottmann, P. F., et al. “Experimental Observations of Twin Formation during Thermal Annealing of Nanocrystalline Copper Films Using Orientation Mapping.” Scripta Materialia, vol. 141, Acta Materialia Inc., 2017, pp. 76–79, doi:10.1016/j.scriptamat.2017.07.029.

Rottmann, P. F., et al. “Experimental Quantification of Mechanically Induced Boundary Migration in Nanocrystalline Copper Films.” Acta Materialia, vol. 140, 2017, pp. 46–55,doi:10.1016/j.actamat.2017.08.022.

Barkia, B., et al. “Multiscale Investigation of Crack Path and Microstructural Changes during Liquid Metal Embrittlement of 304L Austenitic Steel in Liquid Sodium.” Corrosion Science, vol. 127, Elsevier Ltd, 2017, pp. 213–21, doi:10.1016/j.corsci.2017.08.009.

Sunde, J. K., et al. “Precipitate Statistics in an Al-Mg-Si-Cu Alloy from Scanning Precession Electron Diffraction Data.” Journal of Physics: Conference Series, vol. 902,no.1,2017,doi:10.1088/1742-6596/902/1/012022.

Donaldson, Olivia K., et al. “Solute Stabilization of Nanocrystalline Tungsten against Abnormal Grain Growth.” Journal of Materials Research, vol. 33, no. 1, 2018, pp. 68–80,doi:10.1557/jmr.2017.296.

Vetterick, G., et al. “Direct Observation of a Coincident Dislocation- and Grain Boundary-Mediated Deformation in Nanocrystalline Iron.” Materials Science and Engineering A, vol. 709, no. February 2017, 2018, pp. 339–48, doi:10.1016/j.msea.2017.09.020.

Orozco-Caballero, A., et al. “Severe Friction Stir Processing of an Al-Zn-Mg-Cu Alloy: Misorientation and Its Influence on Superplasticity.” Materials and Design, vol. 137, Elsevier Ltd, 2018, pp. 128–39, doi:10.1016/j.matdes.2017.10.008.

Sunde, J. K., et al. “The Evolution of Precipitate Crystal Structures in an Al-Mg-Si(-Cu) Alloy Studied by a Combined HAADF-STEM and SPED Approach.” Materials Characterization, vol. 142, no. March, Elsevier, 2018, pp. 458–69, doi:10.1016/j.matchar.2018.05.031.

Parajuli, P., et al. “Alloying and Annealing Effects on Grain Boundary Character Evolution of Al-Alloy 7075 Thin Films: An ACOM-TEM Analysis.” Minerals, Metals and Materials Series, 2019, pp. 109–19, doi:10.1007/978-3-030-05749-7_12.

Ahmels, L., et al. “Grain Growth Mechanisms in Ultrafine-Grained Steel: An Electron Backscatter Diffraction and in Situ TEM Study.” Journal of Materials Science, vol. 54, no. 14, 2019, pp. 10489–505, doi:10.1007/s10853-019-03611-8.

Sallot, P., et al. “Impact of β -Phase in TiAl Alloys on Mechanical Properties after High Temperature Air Exposure.” 2019, https://hal.archives-ouvertes.fr/hal-02314662.

Ånes, H. W., et al. “In-Situ Observations of Dislocation Recovery and Low Angle Boundary Formation in Deformed Aluminium.” Journal of Physics: Conference Series, vol. 1270, no. 1, 2019, doi:10.1088/1742-6596/1270/1/012010.

Pourbabak, S., et al. “In-Situ TEM Stress Induced Martensitic Transformation in Ni50.8Ti49.2 Microwires.” Shape Memory and Superelasticity, vol. 5, no. 2, Springer US, 2019, pp. 154–62, doi:10.1007/s40830-019-00217-6.

Bowman, W., et al. “Linking Macroscopic and Nanoscopic Ionic Conductivity : A Semi-Empirical Framework for Characterizing Grain Boundary Conductivity in Polycrystalline Ceramics Correlated Electron Microscopy Aberration-Corrected Scanning Transmission Electron Microscopy.” Applied Materials & Interfaces, 2019,doi:10.1021/acsami.9b15933.

Hayden, S. C., et al. “Localized Corrosion of Low-Carbon Steel at the Nanoscale.” Npj Materials Degradation, vol. 3, no. 1, Springer US, 2019, doi:10.1038/s41529-019-0078-1.

Singh, V., et al. “Microstructural Characterization by Automated Crystal Orientation and Phase Mapping by Precession Electron Diffraction in TEM: Application to Hot Deformation of a Î3-TiAl-Based Alloy.” Microscopy and Microanalysis, 2019, pp. 1–9,doi:10.1017/S1431927619000394.

Parajuli, P., et al. “Misorientation Dependence Grain Boundary Complexions in <111> Symmetric Tilt Al Grain Boundaries.” Acta Materialia, vol. 181, Acta Materialia Inc., 2019, pp. 216–27, doi:10.1016/j.actamat.2019.09.010.

Sivakumar, M., et al. “Selected Area Electron Diffraction, a Technique for Determination of Crystallographic Texture in Nanocrystalline Powder Particle of Alloy 617 ODS and Comparison with Precession Electron Diffraction.” Materials Characterization, vol. 157, no. July, Elsevier, 2019, p. 109883, doi:10.1016/j.matchar.2019.109883.

Nathaniel, J. E., et al. “Toward High-Throughput Defect Density Quantification: A Comparison of Techniques for Irradiated Samples.” Ultramicroscopy, vol. 206, Elsevier B.V., 2019, p. 112820, doi:10.1016/j.ultramic.2019.112820.

Xiang, S., et al. “Tuning the Deformation Mechanisms of Boron Carbide via Silicon Doping.” Science Advances, vol. 5, no. 10, 2019, pp. 1–7, doi:10.1126/sciadv.aay0352.

Khan, M. A., et al. “Adiabatic Shear Band Localization in an Al–Zn–Mg–Cu Alloy under High Strain Rate Compression.” Journal of Materials Research and Technology, no. x x, Korea Institute of Oriental Medicine, 2020, doi:10.1016/j.jmrt.2020.02.024.

Wetenschappen, Faculteit, and Departement Fysica. An Advanced TEM Study on Quantification of Ni 4 Ti 3 Precipitates in Low Temperature Aged Ni-Ti Shape Memory Alloy Xiayang Yao (PhD thesis). 2019.

Haug, C., et al. “Early Deformation Mechanisms in the Shear Affected Region underneath a Copper Sliding Contact.” Nature Communications, vol. 11, no. 1, Springer US, 2020, doi:10.1038/s41467-020-14640-2.

Idell, Y., et al. “Geometric Dynamic Recrystallization of Austenitic Stainless Steel through Linear Plane-Strain Machining.” Philosophical Magazine, vol. 0, no. 0, Taylor & Francis, 2020, pp. 1–27, doi:10.1080/14786435.2020.1725680.

Hush, W., et al. Influence of Nano – and Microstructural Features and Defects in Ne – Grained Ni – Ti on the Thermal and Mechanical Reversibility of the Martensitic Transformation.”, 2020, https://www.uantwerpen.be/popup/kalenderonderdeel.aspx?calitem_id=8785&c=LANDP32&n=105387[TG1]

Vaché, N., et al. “Microstructural Study of the NbC to G-Phase Transformation in HP-Nb Alloys.” Materialia, vol. 9, no. December 2019, 2020, doi:10.1016/j.mtla.2020.100593.

Sunde, J. K., et al. “The Effect of Low Cu Additions on Precipitate Crystal Structures in Overaged Al-Mg-Si(-Cu) Alloys.” Materials Characterization, vol. 160, no. November 2019, Elsevier, 2020, p. 110087, doi:10.1016/j.matchar.2019.110087.

Xiang, S., et al. “Tuning the Deformation Mechanisms of Boron Carbide via Silicon Doping.” Science Advances, vol. 5, no. 10, 2019, pp. 1–7, doi:10.1126/sciadv.aay0352.

Grain Growth Mechanisms in Ultrafine Grained Steel – An Electron Backscatter Diffraction and in-situ TEM Study L. Ahmels, A. Kashiwar, T. Scherer, C. Kübel, E. Bruder Journal of Materials Science, 2019, 54, 10489-10505; DOI: 10.1007/s10853-019-03611-8.

Pajares, A., et al. “Critical Effect of Carbon Vacancies on the Reverse Water Gas Shift Reaction over Vanadium Carbide Catalysts.” Applied Catalysis B: Environmental, vol. 267, no. January, Elsevier, 2020, p. 118719, doi:10.1016/j.apcatb.2020.118719.

Early deformation mechanisms in the shear affected region underneath a copper sliding contact C. Haug, F. Ruebeling, A. Kashiwar, P. Gumbsch, C. Kübel, C. Greiner Nature Communication, 2020, 11, 839; DOI: 10.1038/s41467-020-14640-2.

Tracing intermediate phases during crystallization in a Ni–Zr metallic glas S.Y. Liu, Q.P. Cao, X. Mu, T.D. Xu, D. Wang, K. Ståhl, X.D. Wang, D.X. Zhang, C. Kübel, J.Z.Jiang Acta Materialia, 2020, 186, 396-404; DOI: 10.1016/j.actamat.2020.01.016.

ASTAR – MINERALS

Verezhak, M., et al. “ACOM-TEM Analysis of the Effect of Heating on the Mineral Nanocrystals in Bone.” European Microscopy Congress 2016: Proceedings, vol. 172, no. 1, 2016, pp. 734–35, doi:10.1002/9783527808465.emc2016.6109.

Roqué Rosell, J., et al. “Au Crystal Growth on Natural Occurring Au—Ag Aggregate Elucidated by Means of Precession Electron Diffraction (PED).” Journal of Crystal Growth, vol. 483, 2018, pp. 228–35, doi:10.1016/j.jcrysgro.2017.11.031.

Nzogang, B. C., et al. “Characterization by Scanning Precession Electron Diffraction of an Aggregate of Bridgmanite and Ferropericlase Deformed at HP-HT.” Geochemistry, Geophysics, Geosystems, vol. 19, no. 3, 2018, pp. 582–94, doi:10.1002/2017GC007244.

Addad, A., et al. “Anhydrous Phase B: Transmission Electron Microscope Characterization and Elastic Properties.” Geochemistry, Geophysics, Geosystems, vol. 20, no. 8, 2019, pp. 4059–72, doi:10.1029/2019GC008429.

ASTAR – NANOSTRUCTURES

Liu, X., et al. “The Five-Parameter Grain Boundary Character Distribution of Nanocrystalline Tungsten.” Scripta Materialia, vol. 69, no. 5, Acta Materialia Inc., 2013, pp. 413–16, doi:10.1016/j.scriptamat.2013.05.046.

Voliani, V., et al. “Texture and Phase Recognition Analysis of β-NaYF4 Nanocrystals.” Journal of Physical Chemistry C, vol. 118, no. 21, 2014, pp. 11404–08, doi:10.1021/jp5025872.

Kobler, A., et al. “Nanotwinned Silver Nanowires: Structure and Mechanical Properties.” Acta Materialia, vol. 92, 2015, pp. 299–308, doi:10.1016/j.actamat.2015.02.041.

Santiago, U., et al. “A Stable Multiply Twinned Decahedral Gold Nanoparticle with a Barrel-like Shape.” Surface Science, vol. 644, Elsevier B.V., 2016, pp. 80–85, doi:10.1016/j.susc.2015.09.015.

Consonni, V., et al. “Identifying and Mapping the Polytypes and Orientation Relationships in ZnO/CdSe Core-Shell Nanowire Arrays.” Nanotechnology, vol. 27, no. 44, IOP Publishing, 2016, doi:10.1088/0957-4484/27/44/445712.

Sanchez, J. E., et al. “Structural Analysis of the Epitaxial Interface Ag/ZnO in Hierarchical Nanoantennas.” Applied Physics Letters, vol. 109, no. 15, 2016, pp. 2–6,doi:10.1063/1.4964719.

Mendoza-Cruz, R., et al. “Evaporation of Gold on NaCl Surfaces as a Way to Control Spatial Distribution of Nanoparticles: Insights on the Shape and Crystallographic Orientation.” Crystal Growth and Design, vol. 17, no. 11, 2017, pp. 6062–70, doi:10.1021/acs.cgd.7b01158.

Wang, K., et al. “Morphologies of Tungsten Nanotendrils Grown under Helium Exposure.” Scientific Reports, Nature Publishing Group, vol. 7, 42315 (2017) DOI: 10.1038/srep42315.

Sanchez, J. E., et al. “Silver/Zinc Oxide Self-Assembled Nanostructured Bolometer.” Infrared Physics and Technology, vol. 81, 2017, pp. 266–70, doi:10.1016/j.infrared.2017.01.019.

Wang, Y., et al. “Solution Growth of Ultralong Gold Nanohelices.” ACS Nano, vol. 11, no. 6, 2017, pp. 5538–46, doi:10.1021/acsnano.7b00710.

ASTAR THIN FILMS – MULTILAYERS – NANOWIRES

Rauch, E., et al. “Automated Crystal Orientation and Phase Mapping for Thin Film Applications by Transmission Electron Microscopy.” Microscopy and Microanalysis, vol. 17, no. S2, 2011, pp. 1086–87, doi:10.1017/s1431927611006301.

Carpenter, J. S., et al. “A Comparison of Texture Results Obtained Using Precession Electron Diffraction and Neutron Diffraction Methods at Diminishing Length Scales in Ordered Bimetallic Nanolamellar Composites.” Scripta Materialia, vol. 67, no. 4, 2012, pp. 336–39, doi:10.1016/j.scriptamat.2012.05.018.

Wang, B., et al. “Advanced TEM Investigation of the Plasticity Mechanisms in Nanocrystalline Freestanding Palladium Films with Nanoscale Twins.” International Journal of Plasticity, vol. 37, no. 2012, Elsevier Ltd, 2012, pp. 140–56,doi:10.1016/j.ijplas.2012.04.003.

Rajasekhara, S., et al. “Evidence of Metastable Hcp Phase Grains in As-Deposited Nanocrystalline Nickel Films.” Scripta Materialia, vol. 67, no. 2, Acta Materialia Inc.,2012,pp.189–92,doi:10.1016/j.scriptamat.2012.04.014.

Mohseni, H., et al. “Nanocrystalline Orientation and Phase Mapping of Textured Coatings Revealed by Precession Electron Diffraction.” Nanomaterials and Energy, vol. 1, no. 6, 2012, pp. 318–23, doi:10.1680/nme.12.00023.

Han, W., et al. “Design of Radiation Tolerant Materials via Interface Engineering.” Advanced Materials, vol. 25, no. 48, 2013, pp. 6975–79, doi:10.1002/adma.201303400.

Lohmiller, J., et al. “Differentiation of Deformation Modes in Nanocrystalline Pd Films Inferred from Peak Asymmetry Evolution Using in Situ X-Ray Diffraction.” Physical Review Letters, vol. 110, no. 6, 2013, pp. 1–5, doi:10.1103/PhysRevLett.110.066101.

Amin-Ahmadi, B., et al. “Effect of Deposition Rate on the Microstructure of Electron Beam Evaporated Nanocrystalline Palladium Thin Films.” Thin Solid Films, vol. 539, no. 2013, Elsevier B.V., 2013, pp. 145–50, doi:10.1016/j.tsf.2013.05.083.

Polyakov, M. N., et al. “Microstructural Variations in Cu/Nb and Al/Nb Nanometallic Multilayers.” Applied Physics Letters, vol. 102, no. 24, 2013, doi:10.1063/1.4811822.

Lohmiller, J., et al. “The Effect of Solute Segregation on Strain Localization in Nanocrystalline Thin Films: Dislocation Glide vs. Grain-Boundary Mediated Plasticity.” Applied Physics Letters, vol. 102, no. 24, 2013, doi:10.1063/1.4811743.

Lagrange, T., et al. “Topological View of the Thermal Stability of Nanotwinned Copper.” Applied Physics Letters, vol. 102, no. 1, 2013, doi:10.1063/1.4772589.

Brons, J. G., et al. “Abnormalities Associated with Grain Growth in Solid Solution Cu(Ni) Thin Films.” Thin Solid Films, vol. 558, Elsevier B.V., 2014, pp. 170–75, doi:10.1016/j.tsf.2014.03.009.

Liu, X., et al. “Comparison of Crystal Orientation Mapping-Based and Image-Based Measurement of Grain Size and Grain Size Distribution in a Thin Aluminum Film.” Acta Materialia, vol. 79, Acta Materialia Inc., 2014, pp. 138–45, doi:10.1016/j.actamat.2014.07.014.

Colla, M. S., et al. “Dislocation-Mediated Relaxation in Nanograined Columnar Palladium Films Revealed by on-Chip Time-Resolved HRTEM Testing.” Nature Communications, vol. 6, no. May 2014, Nature Publishing Group, 2015, pp. 1–8, doi:10.1038/ncomms6922.

Choi, D., et al. “Failure of Semiclassical Models to Describe Resistivity of Nanometric, Polycrystalline Tungsten Films.” Journal of Applied Physics, vol. 115, no. 10, 2014,doi:10.1063/1.4868093.

Liu, X., et al. “Interfacial Orientation and Misorientation Relationships in Nanolamellar Cu/Nb Composites Using Transmission-Electron-Microscope-Based Orientation and Phase Mapping.” Acta Materialia, vol. 64, Acta Materialia Inc., 2014, pp. 333–44,doi:10.1016/j.actamat.2013.10.046.

Choi, D.. “The Electron Scattering at Grain Boundaries in Tungsten Films.” Microelectronic Engineering, vol. 122, Elsevier B.V., 2014, pp. 5–8, doi:10.1016/j.mee.2014.03.012.

Liu, X., et al. “Grain Size Dependence of the Twin Length Fraction in Nanocrystalline Cu Thin Films via Transmission Electron Microscopy Based Orientation Mapping.” Journal of Materials Research, vol. 30, no. 4, 2015, pp. 528–37, doi:10.1557/jmr.2014.393.

Aebersold, A. B., et al. “Height-Resolved Quantification of Microstructure and Texture in Polycrystalline Thin Films Using TEM Orientation Mapping.” Ultramicroscopy, vol. 159, no. P1, Elsevier, 2015, pp. 112–23, doi:10.1016/j.ultramic.2015.08.005.

Kobler, A., et al. “Nanotwinned Silver Nanowires: Structure and Mechanical Properties.” Acta Materialia, vol. 92, 2015, pp. 299–308, doi:10.1016/j.actamat.2015.02.041.

Mompiou, F., et al. “Quantitative Grain Growth and Rotation Probed by In-Situ TEM Straining and Orientation Mapping in Small Grained Al Thin Films.” Scripta Materialia, vol. 99, Acta Materialia Inc., 2015, pp. 5–8, doi:10.1016/j.scriptamat.2014.11.004.

Pližingrová, E., et al. “2D-Titanium Dioxide Nanosheets Modified with Nd, Ag and Au: Preparation, Characterization and Photocatalytic Activity.” Catalysis Today, vol. 281,2017,pp.165–80,doi:10.1016/j.cattod.2016.08.013.

Rutkowski, B., et al. “A Novel Approach to the Characterization of Thin Oxide Layers.” Materials Letters, vol. 173, Elsevier, 2016, pp. 235–38, doi:10.1016/j.matlet.2016.02.104.

Wang, K., et al. “Morphologies of Tungsten Nanotendrils Grown under Helium Exposure.” Scientific Reports, Nature Publishing Group, vol. 7, 42315 (2017) DOI: 10.1038/srep42315 .

Barmak, K., et al. “On Twin Density and Resistivity of Nanometric Cu Thin Films.” Journal of Applied Physics, vol. 120, no. 6, 2016, doi:10.1063/1.4960701.

Kobler, A., et al. “Challenges in Quantitative Crystallographic Characterization of 3D Thin Films by ACOM-TEM.” Ultramicroscopy, vol. 173, Elsevier, 2017, pp. 84–94,doi:10.1016/j.ultramic.2016.07.007.

Wiezorek, J. M. K., et al. “Composition and Crystal Orientation Mapping of Nano-Scale Multi-Phase Rapid Solidification Microstructures in Hypo-Eutectic Al-Cu Alloy Thin Films.” Microscopy and Microanalysis, vol. 23, no. S1, 2017, pp. 1078–79, doi:10.1017/s1431927617006055.

Ghamarian, I., et al. “Determination of the Five Parameter Grain Boundary Character Distribution of Nanocrystalline Alpha-Zirconium Thin Films Using Transmission Electron Microscopy.” Acta Materialia, vol. 130, Elsevier Ltd, 2017, pp. 164–76, doi:10.1016/j.actamat.2017.03.041.

Rottmann, P. F., et al. “Experimental Observations of Twin Formation during Thermal Annealing of Nanocrystalline Copper Films Using Orientation Mapping.” Scripta Materialia, vol. 141, Acta Materialia Inc., 2017, pp. 76–79, doi:10.1016/j.scriptamat.2017.07.029.

Häusler, I., et al. “Orientation Relationships of Mn0.75Ga0.25As Crystallites on and within GaAs Determined by Scanning Nano Beam Electron Diffraction.” Crystal Research and Technology, vol. 52, no. 1, 2017, pp. 1–8, doi:10.1002/crat.201600261.

Ortega, E., et al. “Phase Identification of III-N Thin Films Grown by Molecular Beam Epitaxy and Migration Enhanced Epitaxy Using Precession Electron Diffraction.” Microscopy and Microanalysis, vol. 23, no. S1, 2017, pp. 1484–85, doi:10.1017/s143192761700808x.

Rohrer, G. S., et al. “The Grain Boundary Character Distribution of Highly Twinned Nanocrystalline Thin Film Aluminum Compared to Bulk Microcrystalline Aluminum.” Journal of Materials Science, vol. 52, no. 16, Springer US, 2017, pp. 9819–33,doi:10.1007/s10853-017-1112-8.

Zhou, X., et al. “Influence of Solute Partitioning on the Microstructure and Growth Stresses in Nanocrystalline Fe(Cr) Thin Films.” Thin Solid Films, vol. 648, no. September 2017, Elsevier, 2018, pp. 83–93, doi:10.1016/j.tsf.2018.01.007.

Guo, Q., et al. “In-Situ Indentation and Correlated Precession Electron Diffraction Analysis of a Polycrystalline Cu Thin Film.” JOM, vol. 70, no. 7, Springer US, 2018, pp. 1081–87, doi:10.1007/s11837-018-2854-8.

Zhou, X., et al. “Phase and Microstructures in Sputter Deposited Nanocrystalline Fe–Cr Thin Films.” Materialia, vol. 3, no. July, Elsevier Ltd, 2018, pp. 295–303, doi:10.1016/j.mtla.2018.07.007.

Parajuli, P., et al. “The Evolution of Growth, Crystal Orientation, and Grain Boundaries Disorientation Distribution in Gold Thin Films.” Crystal Research and Technology, vol. 53, no. 8, 2018, pp. 1–7, doi:10.1002/crat.201800038.

Ugarte, D., et al. “Analysis of Structural Distortion in Eshelby Twisted InP Nanowires by Scanning Precession Electron Diffraction.” Nano Research, vol. 12, no. 4, 2019,pp.939–46,doi:10.1007/s12274-019-2328-5.

Sandfeld, S., et al. “Datasets for the Analysis of Dislocations at Grain Boundaries and during Vein Formation in Cyclically Deformed Ni Micropillars.” Data in Brief, vol. 27, Elsevier Ltd, 2019, p. 104724, doi:10.1016/j.dib.2019.104724.

Samaee, V., et al. “Dislocation Structures and the Role of Grain Boundaries in Cyclically Deformed Ni Micropillars.” Materials Science and Engineering A, vol. 769, no. May 2019, Elsevier B.V., 2020, p. 138295, doi:10.1016/j.msea.2019.138295.

Andersen, I. M., et al. “Exotic Transverse-Vortex Magnetic Configurations in CoNi Nanowires.” ACS Nano, vol. 14, no. 2, 2020, pp. 1399–405, doi:10.1021/acsnano.9b07448.

Zhao, H., et al. “Geometrical Constraints on the Bending Deformation of Penta-Twinned Silver Nanowires.” Acta Materialia, vol. 185, Elsevier Ltd, 2019, pp. 110–18,doi:10.1016/j.actamat.2019.11.058.

ASTAR – ATOM PROBE

Toji, Y., et al. “Atomic-Scale Analysis of Carbon Partitioning between Martensite and Austenite by Atom Probe Tomography and Correlative Transmission Electron Microscopy.” Acta Materialia, vol. 65, Acta Materialia Inc., 2014, pp. 215–28, doi:10.1016/j.actamat.2013.10.064.

Herbig, M., et al. “Atomic-Scale Quantification of Grain Boundary Segregation in Nanocrystalline Material.” Physical Review Letters, vol. 112, no. 12, 2013, pp. 1–5,doi:10.1103/PhysRevLett.112.126103.

Herbig, M., et al. “Combining Structural and Chemical Information at the Nanometer Scale by Correlative Transmission Electron Microscopy and Atom Probe Tomography.” Ultramicroscopy, vol. 153, Elsevier, 2015, pp. 32–39, doi:10.1016/j.ultramic.2015.02.003.

Zhou, X., et al. “Grain Boundary Specific Segregation in Nanocrystalline Fe(Cr).” Scientific Reports, vol. 6, no. September, Nature Publishing Group, 2016, pp. 1–14,doi:10.1038/srep34642.

Herbig, M. “Spatially Correlated Electron Microscopy and Atom Probe Tomography: Current Possibilities and Future Perspectives.” Scripta Materialia, vol. 148, Elsevier Ltd, 2018, pp. 98–105, doi:10.1016/j.scriptamat.2017.03.017.

ASTAR – IN SITU

ASTAR – IN SITU – HOT

Brons, J. G., et al. “A Comparison of Grain Boundary Evolution during Grain Growth in Fcc Metals.” Acta Materialia, vol. 61, no. 11, Acta Materialia Inc., 2013, pp. 3936–44,doi:10.1016/j.actamat.2013.02.057.

Martinez, M., et al. “Mechanisms of Copper Direct Bonding Observed by In-Situ and Quantitative Transmission Electron Microscopy.” Thin Solid Films, vol. 530, Elsevier B.V., 2013, pp. 96–99, doi:10.1016/j.tsf.2012.02.056.

Zweiacker, K. W., et al. “Quantitative Phase Analysis of Rapid Solidification Products in Al-Cu Alloys by Automated Crystal Orientation Mapping in the TEM.” Microscopy and Microanalysis, vol. 21, no. S3, 2015, pp. 1465–66, doi:10.1017/s1431927615008107.

Duerrschnabel, M., et al. Nanoscale Texture Analysis of d-HDDR Processed Nd-Fe-B Powder Particles. European Microscopy Congress 2016: Proceedings; MS06-866, https://doi.org/10.1002/9783527808465.EMC2016.6013

Fauske, V. T., et al. “In Situ Heat-Induced Replacement of GaAs Nanowires by Au.” Nano Letters, vol. 16, no. 5, 2016, pp. 3051–57, doi:10.1021/acs.nanolett.6b00109.

Duerrschnabel, M., et al. “Nanoscale Texture Analysis of D-HDDR Processed Nd-Fe-B Powder Particles.” European Microscopy Congress 2016: Proceedings, no. [TG2] 18, 2016, pp. 1032–33, doi:10.1002/9783527808465.emc2016.6013.

Zhou, X., et al. “In Situ TEM Observations of Initial Oxidation Behavior in Fe-Rich Fe-Cr Alloys.” Surface and Coatings Technology, vol. 357, no. September 2018, Elsevier, 2019, pp. 332–38, doi:10.1016/j.surfcoat.2018.09.084.

ASTAR – IN SITU – STRAIN

Veron, M., et al. “TEM Deformation Maps : Microstructure & Mechanical Behaviour.” TMS 2012, 2012, https://hal.archives-ouvertes.fr/hal-00818007.

Kobler, A., et al. “Combination of in Situ Straining and ACOM TEM: A Novel Method for Analysis of Plastic Deformation of Nanocrystalline Metals.” Ultramicroscopy, vol. 128, 2013, pp. 68–81, doi:10.1016/j.ultramic.2012.12.019.

Kobler, A., et al. “Deformation-Induced Grain Growth and Twinning in Nanocrystalline Palladium Thin Films.” Beilstein Journal of Nanotechnology, vol. 4, no. 1, 2013, pp.554–66,doi:10.3762/bjnano.4.64.

Kobler, A., et al. “In Situ Straining Analysis with ACOM-TEM.” Imaging & Microscopy, no. 1, 2014, pp. 40–43, http://www.imaging-git.com/science/electron-and-ion-microscopy/situ-straining-analysis-acom-tem.

Mompiou, F., et al. “Inter- and Intragranular Plasticity Mechanisms in Ultrafine-Grained Al Thin Films: An in Situ TEM Study.” Acta Materialia, vol. 61, no. 1, 2013,pp.205–16,doi:10.1016/j.actamat.2012.09.051.

Haddad, M., et al. “In-Situ Tensile Test of High Strength Nanocrystalline Bainitic Steel.” Materials Science and Engineering A, vol. 620, Elsevier, 2015, pp. 30–35, doi:10.1016/j.msea.2014.09.088.

Lohmiller, J., et al. “Untangling Dislocation and Grain Boundary Mediated Plasticity in Nanocrystalline Nickel.” Acta Materialia, vol. 65, 2014, pp. 295–307, doi:10.1016/j.actamat.2013.10.071.

Ruffing, C., et al. “Fatigue Behavior of Ultrafine-Grained Medium Carbon Steel with Different Carbide Morphologies Processed by High Pressure Torsion.” Metals, vol. 5, no. 2, 2015, pp. 891–909, doi:10.3390/met5020891.

Kobler, A., et al. “Nanotwinned Silver Nanowires: Structure and Mechanical Properties.” Acta Materialia, vol. 92, 2015, pp. 299–308, doi:10.1016/j.actamat.2015.02.041.

Kobler, A., et al. “ACOM-TEM and Its Application for the Investigation of Deformation Pathways in Nanocrystalline Pd and AuPd.” European Microscopy Congress 2016: Proceedings, vol. 225, no. 1, 2016, pp. 191–92, doi:10.1002/9783527808465.emc2016.8770.

Kobler, A., et al. “In Situ Observation of Deformation Processes in Nanocrystalline Face-Centered Cubic Metals.” Beilstein Journal of Nanotechnology, vol. 7, no. 1, 2016, pp. 572–80, doi:10.3762/bjnano.7.50.

Bufford, D. C., et al. “High Cycle Fatigue in the Transmission Electron Microscope.” Nano Letters, vol. 16, no. 8, 2016, pp. 4946–53, doi:10.1021/acs.nanolett.6b01560.

Rottmann, P. F., et al. “Experimental Quantification of Mechanically Induced Boundary Migration in Nanocrystalline Copper Films.” Acta Materialia, vol. 140, 2017, pp. 46–55,doi:10.1016/j.actamat.2017.08.022.

Izadi, E., et al. “Grain Rotations in Ultrafine-Grained Aluminum Films Studied Using in Situ TEM Straining with Automated Crystal Orientation Mapping.” Materials and Design, vol. 113, Elsevier Ltd, 2017, pp. 186–94, doi:10.1016/j.matdes.2016.10.015.

Aubin, J., et al. “Growth and Structural Properties of Step-Graded, High Sn Content GeSn Layers on Ge.” Semiconductor Science and Technology, vol. 32, no. 9, 2017, doi:10.1088/1361-6641/aa8084.

Izadi, E., et al. “In Situ TEM Investigation of the Deformation Mechanisms and Microstructural Changes in Ultrafine-Grained Non-Textured Aluminum Film Using Automated Crystal Orientation Mapping .” Microscopy and Microanalysis, vol. 23, no. S1, 2017, pp. 768–69, doi:10.1017/s1431927617004500.

Barr, C. M., et al. “Investigation of Grain Growth and Deformation in Nanocrystalline Metals Through In-Situ TEM Mechanical Testing and Crystallographic Orientation Mapping.” Microscopy and Microanalysis, vol. 23, no. S1, 2017, pp. 740–41, doi:10.1017/s1431927617004366.

Kilmametov, A. R., et al. “The Α→ω and Β→ω Phase Transformations in Ti–Fe Alloys under High-Pressure Torsion.” Acta Materialia, vol. 144, no. November, 2018, pp. 337–51,doi:10.1016/j.actamat.2017.10.051.

Wang, J. J., et al. “Revealing the Deformation Mechanisms of Nanograins in Gradient Nanostructured Cu and CuAl Alloys under Tension.” Acta Materialia, vol. 180, 2019,pp.231–42,doi:10.1016/j.actamat.2019.09.021.

ASTAR – IN SITU – ULTRAFAST TEM

Kulovits, A., et al. “Revealing the Transient States of Rapid Solidification in Aluminum Thin Films Using Ultrafast in Situ Transmission Electron Microscopy.” Philosophical Magazine Letters, vol. 91, no. 4, 2011, pp. 287–96, doi:10.1080/09500839.2011.558030.

McKeown, J. T., et al. “In Situ Transmission Electron Microscopy of Crystal Growth-Mode Transitions during Rapid Solidification of a Hypoeutectic Al-Cu Alloy.” Acta Materialia, vol. 65, 2014, pp. 56–68, doi:10.1016/j.actamat.2013.11.046.

Reed, B. W., et al. “Temperature-Driven Disorder-Order Transitions in 2D Copper-Intercalated MoO 3 Revealed Using Dynamic Transmission Electron Microscopy.” 2D Materials, vol. 1, no. 3, 2014, pp. 1–16, doi:10.1088/2053-1583/1/3/035001.

To download the content of the Webinar, please fill out the following form: