This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
ABSOLUTE CONFIGURATION- DYNAMICAL REFINMENTS LITERATURE
Palatinus, L., et al. "An Incommensurately Modulated Structure of _’-Phase of Cu3+xSi Determined by Quantitative Electron Diffraction Tomography." Inorganic Chemistry, vol. 50, no. 8, pp. 3743–51, 2011, doi: 10.1021/ic200102z
Palatinus, L., et al. "structural refinement from precession electron diffraction data" Acta Cryst a69, 171-188, 2013, doi: 10.1107/S010876731204946X
Palatinus, L., et al. " structural refinement using precession electron diffraction tomography and dynamical diffraction : tests on experimental data" Acta Cryst B71, 740-751, 2015, doi: 10.1107/S2052520615017023
Palatinus, L., et al. "Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Theory and Implementation." Acta Crystallographica Section A: Foundations and Advances, vol. 71, pp. 235–44, 2015, doi: 10.1107/S2053273315001266
Ma, Y., et al. "Electron Crystallography for Determining the Handedness of a Chiral Zeolite Nanocrystal." Nature Materials, vol. 16, no. 7, pp. 755–59, 2017, doi: 10.1038/nmat4890
McCusker, L. B., et al. "Electron Diffraction and the Hydrogen Atom: Dynamical Refinement with Electron-Diffraction Data Reveals Hydrogen Atom Positions." Science, vol. 355, no. 6321, p. 136, 2017, doi: 10.1126/science.aal4570
Palatinus, L., et al. "Hydrogen Positions in Single Nanocrystals Revealed by Electron Diffraction." Science, vol. 355, no. 6321, pp. 166–69, 2017, doi: 10.1126/science.aak9652
E Mugnaioli, et al. "Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline", 2018, doi: https://www.degruyter.com/document/doi/10.1515/zkri-2017-2130/html
Brázda, P., et al. "Electron Diffraction Determines Molecular Absolute Configuration in a Pharmaceutical Nanocrystal." Science, vol. 364, no. 6441, pp. 667–69, 2019, doi: 10.1126/science.aaw2560
P Brázda, et al. "Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal", 2019, doi: DOI: 10.1126/science.aaw2560
M. Maslyk, et al. "Multistep Crystallization Pathways in the Ambient‐Temperature Synthesis of a New Alkali‐Activated Binder", 2021, doi: https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202108126