ADT (3D ELECTRON DIFFRACTION TOMOGRAPHY) LITERATURE

ABSOLUTE CONFIGURATION- DYNAMICAL REFINMENTS

  • Niko Vlahakis1, et al. "Features in selected area continuous rotation electron diffraction measurements that may be sensitive to molecular handedness of 3D", 1905, doi: https://journals.iucr.org/a/issues/2022/a1/00/a61133/a61133.pdf

  • Palatinus, L., et al. "An Incommensurately Modulated Structure of _’-Phase of Cu3+xSi Determined by Quantitative Electron Diffraction Tomography." Inorganic Chemistry, vol. 50, no. 8, pp. 3743–51, 2011, doi: 10.1021/ic200102z

  • Palatinus, L., et al. "structural refinement from precession electron diffraction data" Acta Cryst a69, 171-188, 2013, doi: 10.1107/S010876731204946X

  • Palatinus, L., et al. " structural refinement using precession electron diffraction tomography and dynamical diffraction : tests on experimental data" Acta Cryst B71, 740-751, 2015, doi: 10.1107/S2052520615017023

  • Palatinus, L., et al. "Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Theory and Implementation." Acta Crystallographica Section A: Foundations and Advances, vol. 71, pp. 235–44, 2015, doi: 10.1107/S2053273315001266

  • Ma, Y., et al. "Electron Crystallography for Determining the Handedness of a Chiral Zeolite Nanocrystal." Nature Materials, vol. 16, no. 7, pp. 755–59, 2017, doi: 10.1038/nmat4890

  • McCusker, L. B., et al. "Electron Diffraction and the Hydrogen Atom: Dynamical Refinement with Electron-Diffraction Data Reveals Hydrogen Atom Positions." Science, vol. 355, no. 6321, p. 136, 2017, doi: 10.1126/science.aal4570

  • Palatinus, L., et al. "Hydrogen Positions in Single Nanocrystals Revealed by Electron Diffraction." Science, vol. 355, no. 6321, pp. 166–69, 2017, doi: 10.1126/science.aak9652

  • E Mugnaioli, et al. "Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline", 2018, doi: https://www.degruyter.com/document/doi/10.1515/zkri-2017-2130/html

  • Brázda, P., et al. "Electron Diffraction Determines Molecular Absolute Configuration in a Pharmaceutical Nanocrystal." Science, vol. 364, no. 6441, pp. 667–69, 2019, doi: 10.1126/science.aaw2560

  • P Brázda, et al. "Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal", 2019, doi: DOI: 10.1126/science.aaw2560

  • M. Maslyk, et al. "Multistep Crystallization Pathways in the Ambient‐Temperature Synthesis of a New Alkali‐Activated Binder", 2021, doi: https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202108126

  • Jing Ai, et al. "Synchronous Analysis of Chiral Mesostructured Inorganic Crystals Using Three-dimensional Electron Crystallography", 2022, doi: https://doi.org/10.21203/rs.3.rs-1592209/v1

  • Jing Ai, et al. "Synchronous quantitative analysis of chiral mesostructured inorganic crystals by 3D electron diffraction tomography", 2022, doi: https://doi.org/10.1038/s41467-022-33443-1

  • Shah HS, et al. "Absolute Configuration Determination of Chiral API Molecules by MicroED Analysis of Cocrystal Powders Formed Based on Cocrystal Propensity Prediction Calculations", 2023, doi: https://doi.org/10.1002/chem.202203970

  • Christian Jandl, et al. "Absolute Structure Determination of Chiral Zinc Tartrate MOFs by 3D Electron Diffraction", 2023, doi: https://doi.org/10.3390/sym15050983

  • Paul B. Klar, et al. "Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data", 2023, doi: https://doi.org/10.1038/s41557-023-01186-1

  • Jing Ai, et al. "Determination of multilevel chirality in nickel molybdate films by electron crystallography", 2024, doi: https://doi.org/10.1007/s12274-024-6865-1

  • Lijin Wang, et al. "Chirality Determination of Nanocrystals by Electron Crystallography", 2024, doi: https://doi.org/10.1021/acs.jpclett.4c00978

  • Paul Benjamin Klar, et al. "Cryo-tomography and 3D Electron Diffraction Reveal the Polar Habit and Chiral Structure of the…", 2024, doi: https://pubs.acs.org/doi/10.1021/acscentsci.4c00162

ARCHAEOLOGY

  • Zacharias, N., et al. "A Novelty for Cultural Heritage Material Analysis: Transmission Electron Microscope (TEM) 3D Electron Diffraction Tomography Applied to Roman Glass Tesserae." Microchemical Journal, vol. 138, Elsevier B.V., pp. 19–25, 2018, doi: 10.1016/j.microc.2017.12.023

  • S. Nicolopoulos, et al. "Novel characterization techniques for Cultural Heritage using a TEM orientation imaging in combination with 3D precession diffraction tomography: A case study of green and white ancient Roman glass tesserae" Heritage Science 6:64, 2018, doi: 10.1186/s40494-018-0229-7

  • S. Nicolopoulos, et al. "Novel TEM Microscopy and Electron Diffraction Techniques to Characterize Cultural Heritage Materials: From Ancient Greek Artefacts to Maya Mural Paintings." Scanning, vol., 2019, doi: 10.1155/2019/4870695

INSTRUMENTATION AND TECHNIQUES

NANOMATERIALS – SEMICONDUCTORS– OXIDES

  • Birkel, C. S., et al. "Solution Synthesis of a New Thermoelectric Zn1+ XSb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography." Journal of the American Chemical Society, vol. 132, no. 28, pp.9881–89, 2010, doi: 10.1021/ja1035122

  • Sedlmaier, S. J., et al. "SrP3N5O: A Highly Condensed Layer Phosphate Structure Solved from a Nanocrystal by Automated Electron Diffraction Tomography." Chemistry – A European Journal, vol. 17, no. 40, pp. 11258–65, 2011, doi: 10.1002/chem.201101545

  • Mugnaioli, E., et al. "Ba6P12N17O9Br3- A Column-Type Phosphate Structure Solved from Single-Nanocrystal Data Obtained by Automated Electron Diffraction Tomography." European Journal of Inorganic Chemistry, no. 1, pp. 121–25, 2012, doi: 10.1002/ejic.201101149

  • Sarakinou, E., et al. "Structure Characterization of Hard Materials by Precession Electron Diffraction and Automatic Diffraction Tomography: 6H-SiC Semiconductor and Ni 1+xTe 1embedded Nanodomains." Semiconductor Science and Technology, vol. 27, no. 10,, 2012, doi: 10.1088/0268-1242/27/10/105003

  • D.Viladot, et al. "Hafnium-Silicon precipitate structure determination in a new heat resistant ferritic alloy by precession electron diffraction technique" Microsc. Micoanalysis,, 2013, doi: 10.1017/S1431927613013627

  • P.Boullay, et al. "precession electron diffraction tomography for solving complex modulated structures : the case of Bi5Nb3O15" Inorg. Chem. 52, 6127-6135, 2013, doi: 10.1021/ic400529s

  • Samuha, S., et al. "Atomic Structure Solution of the Complex Quasicrystal Approximant Al77Rh15Ru8 from Electron Diffraction Data." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 70, no. 6, pp. 999–1005, 2014, doi: 10.1107/S2052520614022033

  • Hoshyargar, F., et al. "Structure Analysis on the Nanoscale: Closed WS2 Nanoboxes through a Cascade of Topo- and Epitactic Processes." CrystEngComm, vol. 16, no. 23,pp.5087–92, 2014, doi: 10.1039/c4ce00326h

  • Bhat, S., et al. "High-Pressure Synthesis of Novel Boron Oxynitride B6N4O3 with Sphalerite Type Structure." Chemistry of Materials, vol. 27, no. 17, pp. 5907–14, 2015, doi: 10.1021/acs.chemmater.5b01706

  • Mugnaioli, E., et al. "(Na,_)5[MnO2]13 Nanorods: A New Tunnel Structure for Electrode Materials Determined Ab Initio and Refined through a Combination of Electron and Synchrotron Diffraction Data." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 72, no. 6, pp. 893–903, 2016, doi: 10.1107/S2052520616015651

  • Mugnaioli, E., et al. " (Na &Squ;)5 ( MnO2)13 nanorods: a new tunnel structure for electrode materials determined ab initio and refined through a combination of electron and synchtrotron diffraction data Acta Cryst B72, 893-903, 2016, doi: 10.1107/S2052520616015651

  • Tahir, M. N., et al. "Hierachical Ni@Fe2O3 Superparticles through Epitaxial Growth of _-Fe2O3 Nanorods on: In Situ Formed Ni Nanoplates." Nanoscale, vol. 8, no. 18, Royal Society of Chemistry, pp. 9548–55, 2016, doi: 10.1039/c6nr00065g

  • Enrico Mugnaioli, et al. "(Na,square)(5)[MnO2](13) nanorods: a new tunnel structure for electrode materials determined ab initio and refined through a combination of electron and synchrotron diffraction data", 2016, doi: http://dx.doi.org/10.1107/S2052520616015651

  • David, J., et al. "Crystal Phases in Hybrid Metal-Semiconductor Nanowire Devices." Nano Letters, vol. 17, no. 4, pp. 2336–41, 2017, doi: 10.1021/acs.nanolett.6b05223

  • Zhao, H., et al. "Elucidating Structural Order and Disorder Phenomena in Mullite-Type Al4B2O9 by Automated Electron Diffraction Tomography." Journal of Solid State Chemistry, vol. 249, February, pp. 114–23, 2017, doi: 10.1016/j.jssc.2017.02.023

  • Mugnaioli, E., et al. "Ab Initio Structure Determination of Cu2- XTe Plasmonic Nanocrystals by Precession-Assisted Electron Diffraction Tomography and HAADF-STEM Imaging." Inorganic Chemistry, vol. 57, no. 16, American Chemical Society, pp. 10241–48, 2018, doi: 10.1021/acs.inorgchem.8b01445

  • L.Meshi , S.Samuha, et al. "Characterization of Atomic Structures of Nanosized Intermetallic Compounds Using Electron Diffraction Methods" Adv. Mater. 1706704, 2018, doi: 10.1002/adma.201706704

  • Karakulina, O. M., et al. "In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion Batteries." Nano Letters, vol. 18, no. 10, pp. 6286–91, 2018, doi: 10.1021/acs.nanolett.8b02436

  • A.Saikumaran, et al. "Microstructural Characterization of Equiatomic CrFeNbNiV Alloy" Trans Indian Inst Met, 2019, doi: 10.1007/s12666-018-1466-x

  • Klein, H., et al. "The Structure of Nano-Twinned Rhombohedral YCuO 2.66 Solved by Electron Crystallography." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, no. 1, International Union of Crystallography, pp. 107–1, 2019, doi: 10.1107/S205252061801627X

  • F.Brunet, et al. "Oxidative decomposition products of synthetic NaFePO4 mari_ite: nano-textural and electrochemical characterization" Eur. J. Mineral. 31, 837–842, 2019, doi: 10.1127/ejm/2019/0031-2885

  • Hadermann, J., et al. "Structure Solution and Refinement of Metal-Ion Battery Cathode Materials Using Electron Diffraction Tomography." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, no. International Union of Crystallography, pp. 485–94, 2019, doi: 10.1107/S2052520619008291

  • Kaiukov, R., et al. "Cs3Cu4In2Cl13 Nanocrystals: A Perovskite-Related Structure with Inorganic Clusters at A Sites." Inorganic Chemistry, vol. 59, no. 1, pp. 548–54, 2020, doi: 10.1021/acs.inorgchem.9b02834

  • A. Nowroozi, et al. "High cycle life all-solid-state fluoride ion battery with La2NiO4+d high voltage cathode" COMMUNICATIONS MATERIALS |, 2020, doi: 10.1038/s43246-020-0030-5

  • S.Toso, et al. "Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures" J. Am. Chem. Soc. 142, 22, 10198–10211, 2020, doi: 10.1021/jacs.0c03577

  • Jian Li, et al. "Modulated structure determination and ion transport mechanism of oxide-ion conductor CeNbO4+_", Nature Communications, 2020, doi: 10.1038/s41467-020-18481-x

  • Ercin C. Duran, et al. "The structure of a new nano-phase of lanthanum-doped strontium titanate", Journal of Solid State Chemistry 293 121795, 2021, doi: 10.1016/j.jssc.2020.121795

  • Lei Yu, et al. "3D Electron Diffraction Study of Delithiation Induced Lattice Distortion in Li-rich Layered Oxide Cathode", 2022, doi: https://doi.org/10.1017/S1431927622002100

  • Nicole Fillafer, et al. "Design of Active Defects in Semiconductors: 3D Electron Diffraction Revealed Novel Organometallic Lead Bromide Phases Containing Ferrocene as Redox Switches", 2022, doi: https://doi.org/10.1002/adfm.202201126

  • Shitao Wu, et al. "In Situ Three-Dimensional Electron Diffraction for Probing Structural Transformations of Single Nanocrystals", 2022, doi: https://doi.org/10.1021/acs.chemmater.2c01744

  • James L Hart, et al. "Layer Stacking Determination in Topological Semimetal MoTe2 via STEM Imaging, Liquid He TEM, and Quantitative Electron Diffraction", 2022, doi: https://doi.org/10.1017/S1431927622006924

  • Romy Poppe, et al. “Scale-Dependent Photosalience and Topotactic Reaction of Microcrystalline Benzylidenebutyrolactone Determined by Electron Microscopy and Electron Diffraction “, 2022, doi: https://doi.org/10.1107/S2052252522007746

  • Holger Klein, et al. "Structure determination of intermetallic phases in bulk Al alloys by 3D electron diffraction tomography", 2022, doi: https://doi.org/10.1016/j.jallcom.2022.164525

  • Felix Steinke, et al. "Synthesis and Structure Evolution in Metal Carbazole Diphosphonates Followed by Electron Diffraction", 2022, doi: https://doi.org/10.1021/acs.inorgchem.2c02599

  • Yi Luo, et al. "Visualizing the Entire Range of Noncovalent Interactions in Nanocrystalline Hybrid Materials Using 3D Electron Diffraction", 2022, doi: https://doi.org/10.1021/jacs.2c02426

  • Maria Batuk, et al. "Evolution of the oxygen vacancy order during oxidation and reduction of SrFeOx followed by in situ 3D electron diffraction", 2022, doi: https://doi.org/10.26434/chemrxiv-2022-gn3fm

  • Andrea Griesi, et al. "Hybrid improper dipolar density wave in NaLaCoWO6", 2022, doi: https://doi.org/10.1103/PhysRevMaterials.6.034408

  • Digvijay Yadav, et al. "Outgassing of implanted He via short circuit transport along phase and grain boundaries in vapor co-deposited Cu-W nanocomposites", 2022, doi: https://doi.org/10.1016/j.actamat.2022.118306

  • Thomas Mies, et al. "Synthesis and Characterization of a Calcium-Pyrazolonato Complex. Observation of In-Situ Desolvation During Micro-Electron Diffraction", 2022, doi: https://doi.org/10.1002/zaac.202200294

  • Ekaterina Vinokurova, et al. "Microstructural evolution of layered K-doped RuCl3 during annealing traced by thermogravimetric analysis and 3D electron diffraction", 2023, doi: https://doi.org/10.1002/zaac.202300141

  • Ella Mara Schmidt, et al. "Quantitative three-dimensional local order analysis of nanomaterials through electron diffraction", 2023, doi: https://www.nature.com/articles/s41467-023-41934-y

  • I.S.Kotousova, et al. "Study of 6√3 reconstruction conversion on the of 4HSiC(0001) surface to quasi-free epitaxial graphene with electron diffraction", 2023, doi: https://doi.org/10.20944/preprints202306.0138.v1

  • Kaili Mei, et al. "The Application of 3D-ED to Distinguish the Superstructure of Sr1.2Ca0.8Nb2O7 Ignored in SC-XRD", 2023, doi: https://doi.org/10.3390/cryst13060924

  • Jing Wang, et al. "Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction", 2023, doi: https://doi.org/10.1021/jacs.2c13847

  • Hirofumi Kurokawa, et al. "3D Electron Diffraction Structure of an Organic Semiconductor Reveals Conformational Polymorphism", 2024, doi: https://doi.org/10.26434/chemrxiv-2024-pslhg

  • Ercin C. Duran, et al. "3D electron diffraction studies of synthetic rhabdophane (DyPO4·nH2O)", 2024, doi: https://doi.org/10.1107/S2053229624007885

  • Philipp Gollé-Leidreiter, et al. "Crystal structures of two new high-pressure oxynitrides with composition SnGe4N4O4, from single-crystal electron diffraction", 2024, doi: https://doi.org/10.1107/S2052520624002683

  • Wilder Carrillo-Cabrera, et al. "Electron Diffraction Tomography on Two-Phase Nanolamellae of Topochemically Synthesized Cu(Sb2S3)Cl", 2024, doi: https://doi.org/10.1021/acs.inorgchem.4c01674

  • Erica Cordero Oyonarte, et al. "Electrοn crystallοgraphy οf nanοparticles", 2024, doi: https://theses.hal.science/tel-04866041v1

PROTEINS

  • M Gemmi, et al. "Ultra Fast Automated TEM Electron Diffraction Tomography", 2013, doi: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S1431927613005497

  • Nannenga, B. L., et al. "Protein Structure Determination by MicroED." Current Opinion in Structural Biology, vol. 27, no. 1, Elsevier Ltd, pp. 24–31, 2014, doi: 10.1016/j.sbi.2014.03.004

  • Yonekura, K., et al. "Refinement of Cryo-EM Structures Using Scattering Factors of Charged Atoms." Journal of Applied Crystallography, vol. 49, no. 5, pp. 1517–23, 2016, doi: 10.1107/S1600576716011274

  • Xu, H., et al. "A Rare Lysozyme Crystal Form Solved Using Highly Redundant Multiple Electron Diffraction Datasets from Micron-Sized Crystals", Structure, pp.1–9, 2018, doi: 10.1016/j.str.2018.02.015

  • Nannenga, B. L., et al. "The Evolution and the Advantages of MicroED." Frontiers in Molecular Biosciences, vol. 5, no. DEC, pp. 1–5, 2018, doi: 10.3389/fmolb.2018.00114

  • Max T. B. Clabbers & Jan Pieter Abrahams, et al. Electron diffraction and three-dimensional crystallography for structural biology, Crystallography Reviews, 24:3, 176-204, 2018, doi: 10.1080/0889311X.2018.1446427

  • R.Barringer, et al. "Illuminating the Secrets of Crystals – Microcrystal Electron Diffraction in Structural Biology Bioscience Volume 11, 2018, doi: 10.1093/biohorizons/hzy013

  • Max T. B. Clabbers & Jan Pieter Abrahams, et al. Electron diffraction and three-dimensional crystallography for structural biology, Crystallography Reviews, 24:3, 176-204, 2018, doi: 10.1080/0889311X.2018.1446427

  • Brent L. Nannenga et al., et al. "The evolution and the Advantages of MicroED", Frontiers in Molecular Biosciences | www.frontiersin.org 1 December | Volume 5 | Article 114, 2018, doi: 10.3389/fmolb.2018.00114

  • Glynn, C., et al. "Data-Driven Challenges and Opportunities in Crystallography." Emerging Topics in Life Sciences, vol. 3, no. 4, pp. 423–32, 2019, doi: 10.1042/etls20180177

  • Nannenga, B. L., et al. "Microcrystal Electron Diffraction Methodology and Applications." MRS Bulletin, vol. 44, no. 12, pp. 956–60, 2019, doi: 10.1557/mrs.2019.287

  • Lanza, A., et al. "Nanobeam Precession-Assisted 3D Electron Diffraction Reveals a New Polymorph of Hen Egg-White Lysozyme." IUCrJ, vol. 6, International Union of Crystallography, pp. 178–88, 2019, doi: 10.1107/S2052252518017657

  • Zatsepin, N. A., et al. "The Complementarity of Serial Femtosecond Crystallography and MicroED for Structure Determination from Microcrystals." Current Opinion in Structural Biology, vol. 58, no. Figure 1, Elsevier Ltd, pp. 286–93, 2019, doi: 10.1016/j.sbi.2019.06.004

  • Nannenga, B. L., et al. "The Cryo-EM Method Microcrystal Electron Diffraction (MicroED)." Nature Methods, vol. 16, no. 5, Springer US, pp. 369–7, 2019, doi: 10.1038/s41592-019-0395-x

  • Wolff, A. M., et al. "Comparing Serial X-Ray Crystallography and Microcrystal Electron Diffraction ( MicroED ) as Methods for Routine Structure Determination from Small Macromolecular Crystals." IUCrJ, vol. 7, pp. 306–23, 2020, doi: 10.1107/S205225252000072X

  • Chi Nguyen1 and Tamir Gonen, et al. "Beyond protein structure determination with MicroED", Current Opinion in Structural Biology 64:1–8, 2020, doi: 10.1016/j.sbi.2020.05.018

  • Logan S. Richards, et al. "Fragment-based determination of a proteinase K structure from MicroED data using ARCIMBOLDO_SHREDDER", 2020, doi: https://doi.org/10.1107/S2059798320008049

  • Manuel Maestre-Reyna, et al. "Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme", 2022, doi: https://doi.org/10.1038/s41557-022-00922-3

  • Michael W. Martynowycz, et al. "Unlocking the potential of microcrystal electron diffraction", 2022, doi: https://doi.org/10.1063/PT.3.5019

  • Natalie Young, et al. "A Complete Micro-Electron Diffraction (MicroED) Solution for Fast Structure Determination for Macromolecules and Small Molecules", 2022, doi: https://doi.org/10.1017/S143192762200455X

  • Michael W. Martynowycz, et al. "Ab initio phasing macromolecular structures using electron-counted MicroED data", 2022, doi: https://doi.org/10.1038/s41592-022-01485-4

  • Ambarneil Saha, et al. "Electron Diffraction of 3D Molecular Crystals", 2022, doi: https://doi.org/10.1021/acs.chemrev.1c00879

  • Marc J. Gallenito, et al. "Studying membrane proteins with MicroED Biochemical Society Transactions", 2022, doi: https://doi.org/10.1042/BST20210911

  • Marta Kulik, et al. "Theoretical 3D electron diffraction electrostatic potential maps of proteins modeled with a multipolar pseudoatom data bank", 2022, doi: https://doi.org/10.1107/S2059798322005836

  • Daniel X. Du, et al. "Four-dimensional microED of conformational dynamics in protein microcrystals on the femto-to-microsecond timescales", 2023, doi: https://doi.org/10.1016/j.jsb.2023.107941

  • Yoshihiro Watanabe, et al. “Hakuhybotrol, a polyketide produced by Hypomyces pseudocorticiicola, characterized with the assistance of 3D ED/MicroED”, 2023, doi: https://doi.org/10.1039/D2OB02286A

  • Marius Schmidt, et al. "Time-resolved Crystallography on Protein Photoreceptors and Enzymes", 2023, doi: https://doi.org/10.1039/BK9781837670154-00203

  • Cody Gillman, et al. "The structure of the neurotoxin palytoxin determined by MicroED", 2023, doi: https://doi.org/10.1101/2023.03.31.535166

  • Ambarneil Saha, et al. "Beyond MicroED: Ab Initio Structure Elucidation using 4D-STEM", 2023, doi: https://doi.org/10.1093/micmic/ozad067.143

  • Xi Jiang, et al. "Atomic-Scale Corrugations in Crystalline Polypeptoid Nanosheets Revealed by Three-Dimensional Cryogenic Electron Microscopy", 2023, doi: https://doi.org/10.1021/acsmacrolett.3c00101

  • Yoshihiro Watanabe, et al. "Hakuhybotrol, a polyketide produced by Hypomyces pseudocorticiicola, characterized with the assistance of 3D ED/MicroED", 2023, doi: https://doi.org/10.1039/D2OB02286A

  • Alison Haymaker, et al. "Structure determination of a DNA crystal by MicroED", 2023, doi: https://doi.org/10.1101/2023.04.25.538338

  • Lingli Kong, et al. "Facile hermetic TEM grid preparation for molecular imaging of hydrated biological samples at…", 2023, doi: https://doi.org/10.1038/s41467-023-41266-x

  • Alison Haymaker, et al. "Advances and applications of microcrystal electron diffraction (MicroED)", 2024, doi: https://pubmed.ncbi.nlm.nih.gov/38086321/

  • Alison Haymaker, et al. "Advances and applications of microcrystal electron diffraction (MicroED)", 2024, doi: https://pubmed.ncbi.nlm.nih.gov/38086321/

MINERALS-ZEOLITES-MOFS

  • Gemmi, M., et al. "A New Hydrous Al-Bearing Pyroxene as a Water Carrier in Subduction Zones." Earth and Planetary Science Letters, vol. 310, no. 3–4, pp.422–28, 2011, doi: 10.1016/j.epsl.2011.08.019

  • Bellussi, G., et al. "ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity." Angewandte Chemie – International Edition, vol. 51, no. 3, pp.666–69, 2011, doi: 10.1002/anie.201105496

  • Jiang, J., et al. "Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43." Science, vol. 333, no. 6046, pp. 1131–34, 2011, doi: 10.1126/science.1208652

  • Mugnaioli, E., et al. "Ab Initio Structure Determination of Vaterite by Automated Electron Diffraction." Angewandte Chemie – International Edition, vol. 51, no. 28, pp.7041–45, 2012, doi: 10.1002/anie.201200845

  • Feyand, M., et al. "Automated Diffraction Tomography for the Structure Elucidation of Twinned, Sub-Micrometer Crystals of a Highly Porous, Catalytically Active Bismuth Metal-Organic Framework." Angewandte Chemie – International Edition, vol. 51, no. 41, pp. 10373–76, 2012, doi: 10.1002/anie.201204963

  • Gemmi, M., et al. "Structure of the New Mineral Sarrabusite, Pb 5CuCl 4(SeO 3) 4, Solved by Manual Electron-Diffraction Tomography." Acta Crystallographica Section B: Structural Science, vol. 68, no. 1, pp. 15–23, 2012, doi: 10.1107/S010876811104688X

  • López-Marino, S., et al. "ZnSe Etching in Zn-Rich Cu2ZnSnSe4_: An Oxidizing Route for Improvement of Solar Cell Efficiency." Chemistry, A European Journal, vol. 19,no.44,pp.14814–22, 2013, doi: 10.1002/chem.200

  • Plásil, J., et al. "Crystal Structure of Lead Uranyl Carbonate Mineral Widenmannite: Precession Electron-Diffraction and Synchrotron Powder-Diffraction Study." American Mineralogist, vol. 99, no. 2–3, pp. 276–82, 2014, doi: 10.1515/am.2014.4671

  • Cora, I., et al. "Electron Crystallographic Study of a Kaolinite Single Crystal." Applied Clay Science, vol. 90, Elsevier B.V., pp. 6–10, 2014, doi: 10.1016/j.clay.2013.12.034

  • Mugnaioli, E., et al. "Evidence of Noncentrosymmetry of Human Tooth Hydroxyapatite Crystals." Chemistry – A European Journal, vol. 20, no. 23, pp. 6849–52, 2014, doi: 10.1002/chem.201402275

  • Roussel, P., et al. "Sr4Ru6ClO18, a New Ru4+/5+ Oxy-Chloride, Solved by Precession Electron Diffraction: Electric and Magnetic Behavior." Journal of Solid State Chemistry, vol. 212, Elsevier, pp. 99–106, 2014, doi: 10.1016/j.jssc.2014.01.012

  • Koch-Müller, M., et al. "Synthesis of a Quenchable High-Pressure Form of Magnetite (h-Fe3O4) with Composition Fel(Fe2+0.75Mg0.26)Fe2(Fe3+0.70Cr0.15Al0.11Si0.04)2O4." American Mineralogist, vol. 99, no. 11–12, pp. 2405–15, 2014, doi: 10.2138/am-2014-4944

  • Capitani, G. C., et al. "The Bi Sulfates from the Alfenza Mine, Crodo, Italy: An Automatic Electron Diffraction Tomography (ADT) Study." American Mineralogist, vol. 99, no. 2–3, pp. 500–10, 2014, doi: 10.1515/am.2014.4446

  • Juraj Majzlan, et al. "Crystal structure of Fe2(AsO4)(HAsO4)(OH)(H2O)3, a dehydration product of kankite", Eur. J. Mineral. PrePub Article, PrePub, 2015, doi: 10.1127/ejm/2015/0027-2495

  • Gennaro Ventruti, et al. "A structural study of cyanotrichite from Dachang by conventional and automated electron diffraction", Phys Chem Minerals, 2015, doi: 10.1007/s00269-015-0751-z

  • Gemmi, M., et al. "Electron Diffraction Determination of 11.5 Å and HySo Structures: Candidate Water Carriers to the Upper Mantle." American Mineralogist, vol. 101, no. 12, pp. 2645–54, 2016, doi: 10.2138/am-2016-5722

  • Iezzi, G., et al. "Solid Solution along the Synthetic LiAISi2O6-LiFeSi2O6 (Spodumene-Ferri-Spodumene) Join: A General Picture of Solid Solutions, Bond Lengths, Lattice Strains, Steric Effects, Symmetries, and Chemical Compositions of Li Clinopyroxenes." American Mineralogist, vol. 101, no. 11, pp. 2498–513, 2016, doi: 10.2138/am-2016-5784

  • Simancas, J., et al. "Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58." Journal of the American Chemical Society, vol. 138, no. 32, pp. 10116–19, 2016, doi: 10.1021/jacs.6b06394

  • Mugnaioli, E., et al. "Determination of Very Beam-Sensitive Zeolite ITQ-57 by Energy-Filtered Timepix Data." Acta Crystallographica Section A Foundations and Advances, vol. 73, no. a2, pp. C64–C64, 2017, doi: 10.1107/s2053273317095067

  • Ma, Y., et al. "Electron Crystallography for Determining the Handedness of a Chiral Zeolite Nanocrystal." Nature Materials, vol. 16, no. 7, pp. 755–59, 2017, doi: 10.1038/nmat4890

  • Gemmi, M., et al. "Structural Model of Cowlesite by Fast Electron Diffraction Tomography." Acta Crystallographica Section A Foundations and Advances, vol. 73, pp. C999–C999, 2017, doi: 10.1107/s2053273317085758

  • Rozhdestvenskaya, I. V., et al. "The Structure of Denisovite, a Fibrous Nanocrystalline Polytypic Disordered ‘very Complex’ Silicate, Studied by a Synergistic Multi-Disciplinary Approach Employing Methods of Electron Crystallography and X-Ray Powder Diffraction." IUCrJ, vol. 4, no. 100, International Union of Crystallography, pp. 223–42, 2017, doi: 10.1107/S2052252517002585

  • Németh, P., et al. "A Nanocrystalline Monoclinic CaCO3 Precursor of Metastable Aragonite." Science Advances, vol. 4, no. 12, pp. 1–7, 2018, doi: 10.1126/sciadv.aau6178

  • Portolés-Gil, N., et al. "Crystalline Curcumin BioMOF Obtained by Precipitation in Supercritical CO2 and Structural Determination by Electron Diffraction Tomography." ACS Sustainable Chemistry and Engineering, vol. 6, no. 9, pp.12309–19, 2018, doi: 10.1021/acssuschemeng.8b02738

  • Rhauderwiek, T., et al. "Highly Stable and Porous Porphyrin-Based Zirconium and Hafnium Phosphonates-Electron Crystallography as an Important Tool for Structure Elucidation." Chemical Science, vol. 9, no. 24, pp. 5467–78, 2018, doi: 10.1039/c8sc01533c

  • H.Petersen, et al. "An average structure model of the intermediate phase between sodalite and cancrinite" Z. Kristallogr., 2018, doi: 10.1515/zkri-2018-2114

  • Mugnaioli, E. and Mauro Gemmi, et al. "Single-Crystal Analysis of Nanodomains by Electron Diffraction Tomography: Mineralogy at the Order-Disorder Borderline." Zeitschrift Fur Kristallographie – Crystalline Materials, vol. 233, no. 3–4, pp.163–78, 2018, doi: 10.1515/zkri-2017-2130

  • Bieseki, L., et al. "Synthesis and Structure Determination via Ultra-Fast Electron Diffraction of the New Microporous Zeolitic Germanosilicate ITQ-62." Chemical Communications, vol. 54, no. 17, pp. 2122–25, 2018, doi: 10.1039/c7cc09240g

  • Roqué, J., et al. "Structural Characterization and Ab-Initio Resolution of Natural Occurring Zaccariniite (RhNiAs) by Means of Precession Electron Diffraction." Microchemical Journal, vol. 148, no. December Elsevier, pp. 130–40, 2018, doi: 10.1016/j.microc.2019.04.071

  • B.Rondeau, et al. "Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompanying lazulite from Mt. Ibity, Madagascar: an example of structural characterization from dynamical refinement of precession electron diffraction data on submicrometre sample" Eur. J. Mineral. 31, 379–388, 2019, doi: 10.1127/ejm/2019/0031-2817

  • Lanza, A. E., et al. "Daliranite, PbHgAs 2 S 5: Determination of the Incommensurately Modulated Structure and Revision of the Chemical Formula." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, pp. 711–16, 2019, doi: 10.1107/S2052520619007340

  • Bodach, A., et al. "Electron Diffraction Tomography and X-Ray Powder Diffraction on Photoredox Catalyst PDI." CrystEngComm, vol. 21, no. 15, Royal Society of Chemistry,pp.2571–75, 2019, doi: 10.1039/C8CE02026D

  • Campanale, F., et al. "Evidence for Subsolidus Quartz-Coesite Transformation in Impact Ejecta from the Australasian Tektite Strewn Field." Geochimica et Cosmochimica Acta, vol. 264, The Author(s), pp. 105–17, 2019, doi: 10.1016/j.gca.2019.08.014

  • Benjamin Rondea, et al. "Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompanying lazulite from Mt. Ibity, Madagascar: an example of structural characterization from dynamical refinement of precession electron diffraction data on sub-micrometre sample", Eur. J. Mineral. 31, 379–388, 2019, doi: 10.1127/ejm/2019/0031-2817

  • Huang, Z., et al. "Can 3D Electron Diffraction Provide Accurate Atomic Structures of Metal-Organic Frameworks?" Faraday Discussions, pp. 0–14, 2020, doi: 10.1039/d0fd00015a

  • A.Mayoral, et al. "Direct atomic level imaging of Zeolites: Oxygen, Na in Na-LTA and Fe in Fe-MFI" Angew. Chem. Int. Ed. 10.1002/anie.202006122, 2020, doi: 10.1002/anie.202006122

  • B.Q.Lu, et al. "Introducing the crystalline phase of dicalcium phosphate monohydrate" NATURE COMMUNICATIONS | 11:1546, 2020, doi: 10.1038/s41467-020-15333-6

  • Y.Krusiak, et al. "New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy"IUCrJ . 7, 522–534, 2020, doi: 10.1107/S2052252520003991

  • Tu Sun, et al. "Direct-Space Structure Determination of Covalent Organic Frameworks from 3D Electron Diffraction Data", Angew. Chem. Int. Ed.,, 2020, doi: 10.1002/anie.202009922

  • Donghui Jo, et al. "PST-24: A Zeolite with Varying Intracrystalline Channel Dimensionality’, Angewandte Chemie International Edition,, 2020, doi: 10.1002/anie.202007804

  • Isabella Pignatelli, et al. "The effect of the starting mineralogical mixture on the nature of Fe-serpentines obtained during hydrothermal synthesis at 90°C", Clays and Clay Minerals 23 Sept, 2020, doi: 10.1007/s42860-020-00080-y

  • Zhehao Huang, et al. "Three-dimensional electron diffraction for porous crystalline materials: structural determination and beyond", The Royal Society of Chemistry, 2020, doi: 10.1039/d0sc05731b

  • Maxime Debost, et al. "Synthesis of Discrete CHA Zeolite Nanocrystals without Organic Templates for Selective CO2 Capture", Angew. Chem. Int. Ed. 59, 23491–23495, 2020, doi: 10.1002/anie.202009397

  • Jörg Fritz, et al. "Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments", American Mineralogist, Volume 105, pages 1704–1711, 05.00, 2020, doi: 10.2138/am-2020-7393

  • Jordi Rius, et al. "Structural study of decrespignyite-(Y), a complex yttrium are earth copper carbonate chloride, by three-dimensional electron and synchrotron powder diffraction", Eur. J. Mineral., 32, 545–555,, 2020, doi: 10.5194/ejm-32-545-2020

  • Fahui Xiong, et al. "Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for super-reduced mantle-derived fluids?", Eur. J. Mineral., 32, 557–574,, 2020, doi: 10.5194/ejm-32-557-2020

  • Enrico Mugnaioli, et al. "The structure of kaliophilite KAlSiO4, a long-lasting crystallographic problem", IUCrJ . 7, 1070–108, 2020, doi: 10.1107/S2052252520012270

  • Zhehao Huang, et al. "Can 3D electron diffraction provide accurate atomic structures of metal – organic frameworks?", The Royal Society of Chemistry, 2020, doi: 10.1039/d0fd00015a

  • Sven Hovmoller, et al. "Twinning and intertwined microcrystals in an intriguing, yet elusive, mineral", IUCrJ . 7, 951–952, 2020, doi: 10.1107/S2052252520014293

  • Enrico Mugnaioli, et al. "Electron Diffraction on Flash-Frozen Cowlesite Reveals the Structure of the First Two-Dimensional Natural Zeolite", ACS Cent. Sci. 6, 1578-158, 2020, doi: 10.1021/acscentsci.9b01100

  • Elina Kapaca, et al. A journey towards complete structure determination of zeolites by electron crystallography methods", Doctoral Thesis in Inorganic Chemistry, Stockholm, 2020, doi:

  • Stefano Toso, et al. "Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures", J. Am. Chem. Soc. 142, 10198_10211, 2020, doi: 10.1021/jacs.0c03577

  • Gennaro Ventruti, et al. "High_temperature study of basic ferric sulfate, FeOHSO4", Physics and Chemistry of Minerals 47:43, 2020, doi: 10.1007/s00269-020-01113-7

  • Rohit Kumar Dev and Parashuram Mishra, et al. "Synthesis and ab initio Determination of Bi1.25 V0.123 Ca 0.245 N1.24 O8 cubic structure via powder X-ray diffraction data", World Journal of Advanced Research and Reviews, 07(03), 142–154, 2020, doi: 10.30574/wjarr.2020.7.3.0333

  • S Plana-Ruiz, et al. "Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement", 2020, doi: https://www.sciencedirect.com/science/article/pii/S0304399119303663

  • Zhehao Huang, et al. "3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic Frameworks", Coordination Chemistry Reviews 427 213583, 2021, doi: 10.1016/j.ccr.2020.213583

  • Gwladys Steciuk, et al. "Hydrogen disorder in kaatialaite Fe[AsO2(OH)2]5H2O from Ja´chymov, Czech Republic: determination from low-temperature 3D electron diffraction", IUCrJ 8, 2021, doi: 10.1107/S2052252520015626

  • Gwladys Steciuk, et al. "Uranotungstite, the only natural uranyl tungstate: Crystal structure revealed from 3D electron diffraction", 2022, doi: https://doi.org/10.2138/am-2022-8112

  • Juan I. Tirado, et al. "Crystal structure of zeolite A solved by precession electron diffraction tomography", 2022, doi: https://doi.org/10.1107/S0108767321084403

  • Jakub Plášil, et al. "3D Electron Diffraction as a Powerful Tool to Study the Earliest Nanocrystalline Weathering Products: A Case Study of Uraninite Weathering", 2022, doi: https://doi.org/10.1021/acsearthspacechem.1c00386

  • Enrico Mugnaioli, et al. "3D electron diffraction study of terrestrial iron oxide alteration in the Mineo pallasite", 2022, doi: https://doi.org/10.1180/mgm.2022.20

  • Magdalena O. Cichocka, et al. "Aluminosilicate Zeolite EMM-28 Containing Supercavities Determined by Continuous Rotation Electron Diffraction", 2022, doi: https://doi.org/10.1021/acs.inorgchem.2c00856

  • Jian Li, et al. "Atomic-resolution structures from polycrystalline covalent organic frameworks with enhanced cryo-cRED", 2022, doi: https://doi.org/10.1038/s41467-022-31524-9

  • Meng Ge, et al. "Direct Location of Organic Molecules in Framework Materials by Three-Dimensional Electron Diffraction", 2022, doi: https://doi.org/10.1021/jacs.2c05122

  • Dr. Julian T. C. Wennmacher, et al. "Electron Diffraction Enables the Mapping of Coke in ZSM-5 Micropores Formed during Methanol-to-Hydrocarbons Conversion", 2022, doi: https://doi.org/10.1002/anie.202205413

  • Laura Samperisi, et al. "How to get maximum structure information from anisotropic displacement parameters obtained by three-dimensional electron diffraction: an experimental study on metal–organic frameworks", 2022, doi: https://doi.org/10.1107/S2052252522005632

  • Jung Cho, et al. "The synergistic development of electron crystallography and zeolite discovery", 2022, doi: https://doi.org/10.1016/j.micromeso.2022.112400

  • Laura Samperisi, et al. "Three-dimensional electron diffraction for studying order, disorder and flexibility in metalorganic frameworks", 2022, doi: https://su.diva-portal.org/smash/record.jsf?pid=diva2%3A1647337

  • Enrico Mugnaioli, et al. "Wodegongjieite, ideally KCa3(Al7Si9)O32, a new sheet silicate isostructural with the feldspar polymorph kokchetavite, KAlSi3O8", 2022, doi: https://doi.org/10.1180/mgm.2022.107

  • Ian E. Grey, et al. "Diffraction methods in the characterization of new mineral species", 2022, doi: https://doi.org/10.1016/j.jssc.2022.123239

  • Thi Minh Nha Le, et al. "Effect of Introducing Thallium in Microporous Vanado-molybdate with Orthorhombic or Trigonal Structures and Catalytic Properties", 2022, doi: https://doi.org/10.1021/acs.jpcc.2c03892

  • Yi Luo, et al. "SCM-25: A Zeolite with Ordered Meso-cavities Interconnected by 12 × 12 × 10-Ring Channels Determined by 3D Electron Diffraction", 2022, doi: https://doi.org/10.1021/acs.inorgchem.1c03632

  • Taimin Yang, et al. "Single-crystal structure determination of nanosized metal–organic frameworks by three-dimensional electron diffraction", 2022, doi: https://doi.org/10.1038/s41596-022-00720-8

  • Danilo Marchetti, et al. "3D electron diffraction analysis of a novel, mechanochemically synthesized supramolecular organic framework based on tetra, 2023, doi: https://doi.org/10.1107/S2052520623007680

  • Michela La Bella, et al. "Hierarchical synchrotron diffraction and imaging study of the calcium sulfate hemihydrate–gypsum transformation", 2023, doi: https://doi.org/10.1107/S1600576723002881

  • Guojun Zhou, et al. "Structure determination of a low-crystallinity covalent organic framework by three-dimensional electron diffraction", 2023, doi: https://doi.org/10.1038/s42004-023-00915-4

  • Andrey Bardin, et al. "Focused Ion Beam milling and MicroED structure determination of metal-organic framework crystals", 2023, doi: https://doi.org/10.26434/chemrxiv-2023-nfxd0

  • Bernd Marler, et al. "Synthesis and Structure of COE-11, a New Borosilicate Zeolite with a Two-Dimensional Pore System of 12-Ring Channels", 2023, doi: https://doi.org/10.3390/chemistry5020052

  • Carlotta Giacobbe, et al. "The crystal structure of the killer fibre erionite from Tuzköy (Cappadocia, Turkey)", 2023, doi: https://doi.org/10.1107/S2052252523003500

  • Yi Luo Author, et al. "Visualization of topotactic structural transformations of zeolites using 3D electron diffraction", 2023, doi: https://doi.org/10.26434/chemrxiv-2023-pdtg4

  • Sergi Plana-Ruiz, et al. "Three-dimensional electron diffraction on clinkers: the belite α′H incommensurate modulated structure", 2024, doi: https://doi.org/10.1107/S205252062400146X

  • Xiangyu Zhang, et al. "Determining Covalent Organic Framework Structures Using Electron Crystallography and Computational Intelligence", 2024, doi: https://doi.org/10.1021/jacs.4c12757

  • Junjie Xin, et al. "Locating gas molecules in MOFs by cryo-3D electron diffraction", 2024, doi: https://doi.org/10.1016/j.scib.2024.09.009

  • Andrea Sala, et al. "Mechanochemical Synthesis and Three-Dimensional Electron Diffraction Structure Solution of a Novel Cu-Based Protocatechuate Metal–Organic Framework", 2024, doi: https://doi.org/10.1021/acs.cgd.3c01494

  • Sergi Plana-Ruiz, et al. "Three-dimensional electron diffraction on clinkers: the belite α′ H incommensurate modulated structure", 2024, doi: https://doi.org/10.1107/S205252062400146X

  • Chenyang Nie, et al. "Unraveling a Stable 16-Ring Aluminophosphate DNL-11 through Three-Dimensional Electron Diffraction for Atmospheric Water Harvesting", 2024, doi: https://doi.org/10.1021/jacs.4c01393

  • Yuhang Li, et al. "Application of three-dimensional electron diffraction in structure determination of zeolites", 2024, doi: https://doi.org/10.1016/j.cjsc.2024.100237

  • Yi Luo, et al. "Atomic-scale insights into topotactic transformations in extra-large pore silicate zeolites using time-resolved 3D electron diffraction", 2024, doi: https://doi.org/10.26434/chemrxiv-2023-pdtg4-v2

  • Taylan Örs, et al. "Determination of Na+ Cation Locations in Nanozeolite ECR-1 Using a 3D ED Method", 2024, doi: https://doi.org/10.3390/sym16040477

  • Qichen Chen, et al. "Single-Crystal Structural Analysis of 2D Metal–Organic Frameworks and Covalent Organic Frameworks by Three-Dimensional Electron Diffraction", 2024, doi: https://doi.org/10.1021/acs.accounts.4c00335

  • F. Campanale, et al. "TiO 2 II: The high‐pressure Zr‐free srilankite endmember in impact rocks", 2024, doi: https://onlinelibrary.wiley.com/doi/abs/10.1111/maps.14137

  • Lejian Deng, et al. "Synthesis of Single-Crystal Two-Dimensional Covalent Organic Frameworks and Uncovering Their Hidden Structural Features by Three-Dimensional Electron Diffraction", 2024, doi: https://doi.org/10.1021/jacs.4c14535

  • F. Campanale, et al. "TiO2 II: The high-pressure Zr-free srilankite endmember in impact rocks", 2024, doi: https://doi.org/10.1111/maps.14137

ORGANIC-PHARMACEUTICALS

  • Schmidt, M. U., et al. "Electron Diffraction, X-Ray Powder Diffraction and Pair-Distribution- Function Analyses to Determine the Crystal Structures of Pigment Yellow 213, C23H21N5O9." Acta Crystallographica Section B: Structural Science, vol. 65, no. 2, pp. 189–99,, 2009, doi: 10.1107/S0108768109003759

  • Gorelik, T., et al. "Using Electron Diffraction to Solve the Crystal Structure of a Laked Azo Pigment." Crystal Growth and Design, vol. 9, no. 9, pp. 3898–903, 2009, doi: 10.1021/cg801099r

  • Gorelik, T., et al. "H-Bonding Schemes of Di-and Tri-p-Benzamides Assessed by a Combination of Electron Diffraction, X-Ray Powder Diffraction and Solid-State NMR." CrystEngComm, vol. 12, no. 6, pp. 1824–32, 2010, doi: 10.1039/b920569a

  • Kolb, U., et al. "Structural Characterization of Organics Using Manual and Automated Electron Diffraction." Polymer Reviews, vol. 50, no. 3, pp. 385–409, 2010, doi: 10.1080/15583724.2010.494238

  • Gorelik, T. E., et al. "Ab-Initio Crystal Structure Analysis and Refinement Approaches of Oligo p-Benzamides Based on Electron Diffraction Data." Acta Crystallographica Section B: Structural Science, vol. 68, no. 2, International Union of Crystallography, pp. 171–81, 2012, doi: 10.1107/S0108768112003138

  • Gorelik, T. E., et al. "Detecting Crystalline Nonequilibrium Phases on the Nanometer Scale." Crystal Growth and Design, vol. 12, no. 6, pp. 3239–42, 2012, doi: 10.1021/cg300377j

  • Virginia Altoe, et al. "Electron Microscopy Reveals Structure and Morphology of One Molecule Thin Organic Films", 2012, doi: https://doi.org/10.1021/nl203776n

  • Förster, C., et al. "Crystalline Non-Equilibrium Phase of a Cobalt(II) Complex with Tridentate Ligands." European Journal of Inorganic Chemistry, vol. no. 6, pp.920–24, 2015, doi: 10.1002/ejic.201403200

  • Van Genderen, E., et al. "Ab Initio Structure Determination of Nanocrystals of Organic Pharmaceutical Compounds by Electron Diffraction at Room Temperature Using a Timepix Quantum Area Direct Electron Detector." Acta Crystallographica Section A: Foundations and Advances, vol. 72, International Union of Crystallography, pp.236–42, 2016, doi: 10.1107/S2053273315022500

  • Gorelik, T. E., et al. "Crystal Structure of Disordered Nanocrystalline _II-Quinacridone Determined by Electron Diffraction." CrystEngComm, vol. 18, no. 4, Royal Society of Chemistry, pp. 529–35, 2016, doi: 10.1039/c5ce01855b

  • Wilke, M., et al. "The Crystallisation of Copper(II) Phenylphosphonates." Dalton Transactions, vol. 45, no. 43, Royal Society of Chemistry, pp. 17453–63, 2016, doi: 10.1039/c6dt02904c

  • Wang, Y., et al. "Elucidation of the Elusive Structure and Formula of the Active Pharmaceutical Ingredient Bismuth Subgallate by Continuous Rotation Electron Diffraction." Chemical Communications, vol. 53, no. 52, pp. 7018–21, 2017, doi: 10.1039/c7cc03180g

  • Das, P. P., et al. "Crystal Structures of Two Important Pharmaceuticals Solved by 3D Precession Electron Diffraction Tomography." Organic Process Research and Development, vol. 22, no. 10, American Chemical Society, pp. 1365–72, 2018, doi: 10.1021/acs.oprd.8b00149

  • Gruene, T., et al. "Rapid Structure Determination of Microcrystalline Molecular Compounds Using Electron Diffraction." Angewandte Chemie – International Edition, vol. 57, no. 50, pp. 16313–17, 2018, doi: 10.1002/anie.201811318

  • Jones, C. G., et al. "The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination." ACS Central Science, vol. 4, no. 11, pp. 1587–92, 2018, doi: 10.1021/acscentsci.8b00760

  • Kunde, T., et al. "Microcrystal Electron Diffraction (MicroED) for Small-Molecule Structure Determination." Angewandte Chemie – International Edition, vol. 58, no. 3,pp.666–68, 2019, doi: 10.1002/anie.201813215

  • Clabbers, M. T. B., et al. "Reducing Dynamical Electron Scattering Reveals Hydrogen Atoms." Acta Crystallographica Section A: Foundations and Advances, vol. 75, no. 1, International Union of Crystallography, pp. 82–93, 2019, doi: 10.1107/S2053273318013918

  • Jones, C. G., et al. "Characterization of Reactive Organometallic Species via MicroED." ACS Central Science, vol. 5, no. 9, pp. 1507–13, 2019, doi: 10.1021/acscentsci.9b00403

  • Andrusenko, I., et al. "The Crystal Structure of Orthocetamol Solved by 3D Electron Diffraction." Angewandte Chemie – International Edition, vol. 58, no. 32, pp.10919–22, 2019, doi: 10.1002/anie.201904564

  • Guzmán-Afonso, C., et al. "Understanding Hydrogen-Bonding Structures of Molecular Crystals via Electron and NMR Nanocrystallography." Nature Communications, vol. 10, no. 1, Springer US, pp. 1–10, 2019, doi: 10.1038/s41467-019-11469-2

  • Broadhurst, E. T., et al. "Polymorph Evolution during Crystal Growth Studied by 3D Electron Diffraction." IUCrJ, vol. 7, pp. 5–9, 2020, doi: 10.1107/S2052252519016105

  • Gemmi, M., et al. "A New Method Based on Electron Diffraction for Detecting Nanoparticles in Injectable Medicines." Journal of Pharmaceutical Sciences, vol. 109, no. 1, Elsevier Ltd, pp. 891–99, 2020, doi: 10.1016/j.xphs.2019.07.008

  • Iryna Andrusenko, et al. "A new olanzapine cocrystal obtained from volatile deep eutectic solvents and determined by 3D electron diffraction", Acta Cryst. . B76, 1036–1044, 2020, doi: 10.1107/S2052520620012779

  • Victoria Hamilton, et al. "Racemic Conglomerate Formation via Crystallization of Metaxalone from Volatile Deep Eutectic Solvents", Cryst. Growth Des. 20, 4731_4739, 2020, doi: 10.1021/acs.cgd.0c00497

  • Emma Danelius, et al. "MicroED in natural product and small molecule research", The Royal Society of Chemistry, 2020, doi: 10.1039/d0np00035c

  • Bo Wang, et al. "Absolute configuration determination of pharmaceutical crystalline powders by MicroED via chiral salt formation", 2022, doi: https://doi.org/10.1039/d2cc00221c

  • Nicole Hoefer, et al. "Crystal Structure Determination of Gramicidin by Microcrystal Electron Diffraction", 2022, doi: https://doi.org/10.1017/S1431927622004573

  • Tatiana E. Gorelik, et al. "Crystal structure of natural product argyrin-D determined by 3D electron diffraction", 2022, doi: https://doi.org/10.1039/D2CE00707J

  • Lightowler, et al. "Investigating polymorphism in small molecules using three-dimensional electron diffraction", 2022, doi: https://su.diva-portal.org/smash/record.jsf?pid=diva2%3A1685658

  • Laurence R. Doyle, et al. "MicroED characterization of a robust cationic σ-alkane complex stabilized by the [B(3,5-(SF5)2C6H3)4]− anion, via on-grid solid/gas single-crystal to single-crystal reactivity", 2022, doi: https://doi.org/10.1039/D2DT00335J

  • Vince M. Hipwell, et al. "Scale-Dependent Photosalience and Topotactic Reaction of Microcrystalline Benzylidenebutyrolactone Determined by Electron Microscopy and Electron Diffraction", 2022, doi: https://doi.org/10.1021/acs.cgd.1c01378

  • E. Mugnaioli, et al. "Strategies for structure solution of small-molecule organics by 3D ED using a small beam", 2022, doi: https://journals.iucr.org/a/issues/2021/a2/00/a59751/a59751.pdf

  • S. Plana-Ruiz, et al. "The crystal structure determination of an organic dye with triclinic symmetry by electron diffraction", 2022, doi: https://doi.org/10.1107/S0108767321095234

  • Darpandeep Aulakh, et al. "Retrospect and Prospect of Small Molecule Microcrystal Electron Diffraction for Pharmaceutical Industry", 2022, doi: https://journals.iucr.org/a/issues/2022/a1/00/a60899/a60899.pdf

  • Iryna Andrusenko, et al. "3D electron diffraction for structure determination of small-molecule nanocrystals: A possible breakthrough for the pharmaceutical industry", 2022, doi: https://doi.org/10.1002/wnan.1810

  • Christopher J. H. Smalley, et al. "A structure determination protocol based on combined analysis of 3D-ED data, powder XRD data, solid-state NMR data and DFT-D calculations reveals the structure of a new polymorph of l-tyrosine", 2022, doi: https://doi.org/10.1039/D1SC06467C

  • Shuting Li, et al. "Direct Structure determination from Spherulites using 3D Electron Diffraction", 2022, doi: https://doi.org/10.26434/chemrxiv-2022-jh1lx

  • Erik Svensson Grape, et al. "Structure of the active pharmaceutical ingredient bismuth subsalicylate", 2022, doi: https://doi.org/10.1038/s41467-022-29566-0

  • Erik Svensson Grape, et al. "Triple helix and rod structures of the antiseptic drug bibrocathol revealed by electron crystallography", 2022, doi: https://doi.org/10.1039/D2CC04209F

  • Iryna Andrusenko, et al. "True mol­ecular conformation and structure determination by three-dimensional electron diffraction of PAH by-products potentially useful for electronic applications·, 2022, doi: https://doi.org/10.1107/S205225252201154X

  • Iryna Andrusenko, et al. "Two New Organic Co-Crystals Based on Acetamidophenol Molecules", 2022, doi: https://doi.org/10.3390/sym14030431

  • Joseph Hitchen, et al. "Organic Cocrystals of TCNQ and TCNB Based on an Orthocetamol Backbone Solved by Three-Dimensional Electron Diffraction", 2023, doi: https://doi.org/10.1021/acs.cgd.1c01095

  • Kiyofumi Takaba, et al. "Comprehensive application of XFEL micro crystallography for novel organic compounds", 2023, doi: https://doi.org/10.26434/chemrxiv-2023-69p99

  • Tatiana E. Gorelik, et al. "Crystal structure of 9, 10-bis-((perchloro-phenyl)-ethynyl) anthracene determined from three-dimensional electron diffraction data", 2023, doi: https://doi.org/10.1515/zkri-2023-0009

  • Danelius E, et al. "MicroED as a powerful tool for structure determination of macrocyclic drug compounds directly from their powder formulations", 2023, doi: https://doi.org/10.1101/2023.07.31.551405

  • Joseph Hitchen, et al. "Organic Cocrystals of TCNQ and TCNB Based on an Orthocetamol Backbone Solved by Three-Dimensional Electron Diffraction", 2023, doi: https://doi.org/10.1021/acs.cgd.1c01095

  • Molly Lightowler, et al. "Phase identification and discovery of hidden crystal forms in a polycrystalline pharmaceutical sample using high-throughput 3D electron diffraction", 2023, doi: https://chemrxiv.org/engage/chemrxiv/article-details/6466d172a32ceeff2ddee872

  • Bu G1, et al. "Polymorphic Structure Determination of the Macrocyclic Drug Paritaprevir by MicroED", 2023, doi: https://doi.org/10.1101/2023.09.09.556999

  • Jessica E. Burch, et al. "Putting MicroED to the test: an unabridged account of the evaluation of 30 diverse pharma compounds", 2023, doi: https://chemrxiv.org/engage/chemrxiv/article-details/61670e747d3da50c42f692b9

  • Kunal Kumar Jha, et al. "Structures of Vitamin D derivatives by electron diffraction", 2023, doi: https://programme.conventus.de/en/mc-2023/posters/52cfbada-3556-4038-ab19-40980527ee74

  • Jieye Lin, et al. "Unraveling the Structure of Meclizine Dihydrochloride with MicroED", 2023, doi: https://doi.org/10.1101/2023.09.05.556418

  • Pedro Nunes, et al. "3D Electron Diffraction of Small Molecules on the MerlinEM Detector", 2023, doi: https://doi.org/10.1093/micmic/ozad067.511

  • Lorenza Romagnoli, et al. "4,4′-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Lead Iodide C30H22N2Pb2I6: A Highly Luminescent, Chemically and Thermally Stable One-Dimensional Hybrid Iodoplumbate", 2023, doi: https://doi.org/10.1021/acs.chemmater.2c03798

  • Tatiana E. Gorelik, et al. "Analysis of diffuse scattering in electron diffraction data for the crystal structure determination of Pigment Orange 13, C32H24Cl2N8O2", 2023, doi: https://doi.org/10.1107/S2052520623000720

  • Shuting Li, et al. "Direct structure determination of vemurafenib polymorphism from compact spherulites using 3D electron diffraction", 2023, doi: https://doi.org/10.1038/s42004-022-00804-2

  • Jieye Lin1, et al. "Distinct Conformations of Mirabegron Determined by MicroED", 2023, doi: https://doi.org/10.1101/2023.06.28.546957

  • Emma Danelius, et al. "MicroED in drug discovery", 2023, doi: https://doi.org/10.1016/j.sbi.2023.102549

  • Kiyofumi Takaba, et al. "Structural resolution of a small organic molecule by serial X-ray free-electron laser and electron crystallography", 2023, doi: https://doi.org/10.1038/s41557-023-01162-9

  • Diptajyoti Gogoi, et al. "Structure Elucidation of Olanzapine Molecular Salts by Combining Mechanochemistry and Micro-Electron Diffraction", 2023, doi: https://doi.org/10.1021/acs.cgd.3c00432

  • Dr. Durga Prasad Karothu, et al. "The Elusive Structure of Levocetirizine Dihydrochloride Determined by Electron Diffraction", 2023, doi: https://doi.org/10.1002/anie.202303761

  • Bu, Guanhong Wieske, et al. "Simeprevir: The First Macrocyclic Drug Elucidated Ab Initio by MicroED", 2023, doi: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1750553&dswid=-8778

  • Avital Wagner, et al. "Structure Determination of Biogenic Crystals Directly from 3D Electron Diffraction Data", 2024, doi: https://pubs.acs.org/doi/10.1021/acs.cgd.3c01290

  • Leung, Helen W, et al. "From formulation to structure: 3D electron diffraction for the structure solution of a new indomethacin polymorph from an amorphous solid dispersion", 2024, doi: https://doi.org/10.1107/S2052252524008121

  • Hidetomo Yokoo, et al. "Rapid Structure Determination of Ranitidine Hydrochloride API in Two Crystal Forms Using Microcrystal Electron Diffraction", 2024, doi: https://doi.org/10.1248/cpb.c23-00745

  • Agata Jeziorna, et al. "SCXRD, CSP-NMRX and microED in the quest for three elusive polymorphs of meloxicam", 2024, doi: https://doi.org/10.1107/S2052252524011898

  • Youwei Xu, et al. "Structure Determination and 3D ED/MicroED-Guided Synthesis of a New (S)-Ibuprofen–l-phenylalanine Co-Crystal", 2024, doi: https://doi.org/10.1021/acs.cgd.3c01391

  • Erik Svensson Grape, et al. "Brilliantly red: the structure of carmine", 2024, doi: https://doi.org/10.26434/chemrxiv-2024-30t84-v2

  • Emre Yörük, et al. "Electron diffraction unveils the 2D metal-radical framework of two molecule-based magnets", 2024, doi: https://doi.org/10.1039/D4QI02257B

  • Yaşar Krysiak, et al. "High Temperature Electron Diffraction on Organic Crystals: In Situ Crystal Structure Determination of Pigment Orange 34", 2024, doi: https://doi.org/10.1021/jacs.3c14800

  • Kaichao Wang, et al. "Large-Scale Synthesis of High-Purity Isoguanosine and Resolution of its Crystal Structure by Microcrystal Electron Diffraction", 2024, doi: https://doi.org/10.1002/open.202400141

  • Molly Lightowler, et al. "Phase Identification and Discovery of an Elusive Polymorph of Drug-Polymer Inclusion Complex Using Automated 3D Electron Diffraction", 2024, doi: https://doi.org/10.1002/anie.202317695

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Strictly Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

3rd Party Cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.