This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
ADT (3D ELECTRON DIFFRACTION TOMOGRAPHY) LITERATURE
ABSOLUTE CONFIGURATION- DYNAMICAL REFINMENTS
Palatinus, L., et al. "An Incommensurately Modulated Structure of _’-Phase of Cu3+xSi Determined by Quantitative Electron Diffraction Tomography." Inorganic Chemistry, vol. 50, no. 8, pp. 3743–51, 2011, doi: 10.1021/ic200102z
Palatinus, L., et al. "structural refinement from precession electron diffraction data" Acta Cryst a69, 171-188, 2013, doi: 10.1107/S010876731204946X
Palatinus, L., et al. " structural refinement using precession electron diffraction tomography and dynamical diffraction : tests on experimental data" Acta Cryst B71, 740-751, 2015, doi: 10.1107/S2052520615017023
Palatinus, L., et al. "Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Theory and Implementation." Acta Crystallographica Section A: Foundations and Advances, vol. 71, pp. 235–44, 2015, doi: 10.1107/S2053273315001266
Ma, Y., et al. "Electron Crystallography for Determining the Handedness of a Chiral Zeolite Nanocrystal." Nature Materials, vol. 16, no. 7, pp. 755–59, 2017, doi: 10.1038/nmat4890
McCusker, L. B., et al. "Electron Diffraction and the Hydrogen Atom: Dynamical Refinement with Electron-Diffraction Data Reveals Hydrogen Atom Positions." Science, vol. 355, no. 6321, p. 136, 2017, doi: 10.1126/science.aal4570
Palatinus, L., et al. "Hydrogen Positions in Single Nanocrystals Revealed by Electron Diffraction." Science, vol. 355, no. 6321, pp. 166–69, 2017, doi: 10.1126/science.aak9652
E Mugnaioli, et al. "Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline", 2018, doi: https://www.degruyter.com/document/doi/10.1515/zkri-2017-2130/html
Brázda, P., et al. "Electron Diffraction Determines Molecular Absolute Configuration in a Pharmaceutical Nanocrystal." Science, vol. 364, no. 6441, pp. 667–69, 2019, doi: 10.1126/science.aaw2560
P Brázda, et al. "Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal", 2019, doi: DOI: 10.1126/science.aaw2560
M. Maslyk, et al. "Multistep Crystallization Pathways in the Ambient‐Temperature Synthesis of a New Alkali‐Activated Binder", 2021, doi: https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202108126
ARCHAEOLOGY
Zacharias, N., et al. "A Novelty for Cultural Heritage Material Analysis: Transmission Electron Microscope (TEM) 3D Electron Diffraction Tomography Applied to Roman Glass Tesserae." Microchemical Journal, vol. 138, Elsevier B.V., pp. 19–25, 2018, doi: 10.1016/j.microc.2017.12.023
S. Nicolopoulos, et al. "Novel characterization techniques for Cultural Heritage using a TEM orientation imaging in combination with 3D precession diffraction tomography: A case study of green and white ancient Roman glass tesserae" Heritage Science 6:64, 2018, doi: 10.1186/s40494-018-0229-7
S. Nicolopoulos, et al. "Novel TEM Microscopy and Electron Diffraction Techniques to Characterize Cultural Heritage Materials: From Ancient Greek Artefacts to Maya Mural Paintings." Scanning, vol., 2019, doi: 10.1155/2019/4870695
INSTRUMENTATION AND TECHNIQUES
Kolb, U., et al. "Towards Automated Diffraction Tomography: Part I-Data Acquisition." Ultramicroscopy, vol. 107, no. 6–7, pp. 507–13, 2007, doi: 10.1016/j.ultramic.2006.10.007
Kolb, U., et al. "Towards Automated Diffraction Tomography. Part II-Cell Parameter Determination." Ultramicroscopy, vol. 108, no. 8, pp. 763–72, 2008, doi: 10.1016/j.ultramic.2007.12.002
Mugnaioli, E., et al. "‘Ab Initio’ Structure Solution from Electron Diffraction Data Obtained by a Combination of Automated Diffraction Tomography and Precession Technique." Ultramicroscopy, vol. 109, no. 6, pp. 758–65, 2009, doi: 10.1016/j.ultramic.2009.01.011
Gorelik, T. E., et al. "Structure Solution with Automated Electron Diffraction Tomography Data: Different Instrumental Approaches." Journal of Microscopy, vol. 244, no. 3, pp. 325–31, 2011, doi: 10.1111/j.1365-2818.2011.03550.x
U.Kolb, et al. "automated electron diffraction tomography-a new tool for nanocrystal structure analysis" Cryst. Res.Techolog. 46, 6, 542-554, 2011, doi: 10.1002/crat.201100036
Rius, J., et al. "Application of _ Recycling to Electron Automated Diffraction Tomography Data from Inorganic Crystalline Nanovolumes." Acta Crystallographica Section A: Foundations of Crystallography, vol. 69, no. 4, pp.396–407, 2013, doi: 10.1107/S0108767313009549
Kolb, U., et al. "The Benefit of Automated Electron Diffraction Tomography (ADT) for Nano Science." Microscopy and Microanalysis, vol. 19, no. S2, pp. 318–19, 2013, doi: 10.1017/s1431927613003589
Mugnaioli, E., et al. "Closing the Gap between Electron and X-Ray Crystallography." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 71, International Union of Crystallography, pp. 737–39, 2015, doi: 10.1107/S2052520615022441
Gemmi, M.,, et al. "Fast Electron Diffraction Tomography." Journal of Applied Crystallography, vol. 48, no. i, pp. 718–27, 2015, doi: 10.1107/S1600576715004604
Bowden, D., et al. "A High-Strength Silicide Phase in a Stainless Steel Alloy Designed for Wear-Resistant Applications." Nature Communications, vol. 9, no. 1, Springer US,pp.1–10, 2018, doi: 10.1038/s41467-018-03875-9
Gemmi, M., et al. "3D Electron Diffraction Techniques." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, International Union of Crystallography, pp. 495–504, 2019, doi: 10.1107/S2052520619007510
Gemmi, M., et al. "3D Electron Diffraction: The Nanocrystallography Revolution." ACS Central Science, vol. 5, no. 8, pp. 1315–29, 2019, doi: 10.1021/acscentsci.9b00394
Kolb, U., et al. "Automated Electron Diffraction Tomography – Development and Applications." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, International Union of Crystallography, pp.463–74, 2019, doi: 10.1107/S2052520619006711
Delimitis, A., et al. "Geometry Determination and Refinement in the Rotation Electron Diffraction Technique." Ultramicroscopy, vol. 201, Elsevier B.V., pp. 68–76, 2019, doi: 10.1016/j.ultramic.2019.02.011
Kodjikian, S., et al. "Low-Dose Electron Diffraction Tomography (LD-EDT)." Ultramicroscopy, vol. 200, no. February, pp. 12–19, 2019, doi: 10.1016/j.ultramic.2019.02.010
Mugnaioli, E., et al. "Structure Analysis of Materials at the Order-Disorder Borderline Using Three-Dimensional Electron Diffraction." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, International Union of Crystallography, pp. 550–63, 2019, doi: 10.1107/S2052520619007339
Plana-Ruiz, S., et al. "Fast-ADT: A Fast and Automated Electron Diffraction Tomography Setup for Structure Determination and Refinement." Ultramicroscopy, vol. 211, no. January, Elsevier B.V., p. 112951, 2020, doi: 10.1016/j.ultramic.2020.112951
Erik Fröjdh, et al. "Discrimination of Aluminum from Silicon by Electron Crystallography with the JUNGFRAU Detector", Crystals 10, 1148, 2020, doi: 10.3390/cryst10121148
S Plana Ruiz - 2021 - diposit.ub.edu, et al. "Development & Implementation of an Electron Diffraction Approach for Crystal Structure Analysis", 2021, doi: http://diposit.ub.edu/dspace/handle/2445/174175
T. Gruene, et al. "3D Electron Diffraction for Chemical Analysis: Instrumentation Developments and Innovative Applications", 2021, doi: https://doi.org/10.1021/acs.chemrev.1c00207
F. Papi, et al. "Crystal Structure of a Peculiar Polycyclic Aromatic Hydrocarbon Determined by 3D Electron Diffraction", 2021, doi: https://pubs.acs.org/doi/10.1021/acs.cgd.1c00820
M. Quintelier, et al. "Determination of Spinel Content in Cycled Li1. 2Ni0. 13Mn0. 54Co0. 13O2 Using Three-Dimensional Electron Diffraction and Precession Electron Diffraction", 2021, doi: https://www.mdpi.com/2073-8994/13/11/1989
P Gollé-Leidreiter,, et al. "Crystal structure determination of a new LaPO4 phase in a multicomponent glass ceramic via 3D electron diffraction", 2021, doi: https://www.sciencedirect.com/science/article/pii/S0272884221033046?via%3Dihub
D. Marchetti, et al. "Combined Approach of Mechanochemistry and Electron Crystallography for the Discovery of 1D and 2D Coordination Polymers", 2021, doi: https://pubs.acs.org/doi/10.1021/acs.cgd.1c01058
NANOMATERIALS – SEMICONDUCTORS– OXIDES
Birkel, C. S., et al. "Solution Synthesis of a New Thermoelectric Zn1+ XSb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography." Journal of the American Chemical Society, vol. 132, no. 28, pp.9881–89, 2010, doi: 10.1021/ja1035122
Sedlmaier, S. J., et al. "SrP3N5O: A Highly Condensed Layer Phosphate Structure Solved from a Nanocrystal by Automated Electron Diffraction Tomography." Chemistry – A European Journal, vol. 17, no. 40, pp. 11258–65, 2011, doi: 10.1002/chem.201101545
Mugnaioli, E., et al. "Ba6P12N17O9Br3- A Column-Type Phosphate Structure Solved from Single-Nanocrystal Data Obtained by Automated Electron Diffraction Tomography." European Journal of Inorganic Chemistry, no. 1, pp. 121–25, 2012, doi: 10.1002/ejic.201101149
Sarakinou, E., et al. "Structure Characterization of Hard Materials by Precession Electron Diffraction and Automatic Diffraction Tomography: 6H-SiC Semiconductor and Ni 1+xTe 1embedded Nanodomains." Semiconductor Science and Technology, vol. 27, no. 10,, 2012, doi: 10.1088/0268-1242/27/10/105003
D.Viladot, et al. "Hafnium-Silicon precipitate structure determination in a new heat resistant ferritic alloy by precession electron diffraction technique" Microsc. Micoanalysis,, 2013, doi: 10.1017/S1431927613013627
P.Boullay, et al. "precession electron diffraction tomography for solving complex modulated structures : the case of Bi5Nb3O15" Inorg. Chem. 52, 6127-6135, 2013, doi: 10.1021/ic400529s
Samuha, S., et al. "Atomic Structure Solution of the Complex Quasicrystal Approximant Al77Rh15Ru8 from Electron Diffraction Data." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 70, no. 6, pp. 999–1005, 2014, doi: 10.1107/S2052520614022033
Hoshyargar, F., et al. "Structure Analysis on the Nanoscale: Closed WS2 Nanoboxes through a Cascade of Topo- and Epitactic Processes." CrystEngComm, vol. 16, no. 23,pp.5087–92, 2014, doi: 10.1039/c4ce00326h
Bhat, S., et al. "High-Pressure Synthesis of Novel Boron Oxynitride B6N4O3 with Sphalerite Type Structure." Chemistry of Materials, vol. 27, no. 17, pp. 5907–14, 2015, doi: 10.1021/acs.chemmater.5b01706
Mugnaioli, E., et al. "(Na,_)5[MnO2]13 Nanorods: A New Tunnel Structure for Electrode Materials Determined Ab Initio and Refined through a Combination of Electron and Synchrotron Diffraction Data." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 72, no. 6, pp. 893–903, 2016, doi: 10.1107/S2052520616015651
Mugnaioli, E., et al. " (Na &Squ;)5 ( MnO2)13 nanorods: a new tunnel structure for electrode materials determined ab initio and refined through a combination of electron and synchtrotron diffraction data Acta Cryst B72, 893-903, 2016, doi: 10.1107/S2052520616015651
Tahir, M. N., et al. "Hierachical Ni@Fe2O3 Superparticles through Epitaxial Growth of _-Fe2O3 Nanorods on: In Situ Formed Ni Nanoplates." Nanoscale, vol. 8, no. 18, Royal Society of Chemistry, pp. 9548–55, 2016, doi: 10.1039/c6nr00065g
David, J., et al. "Crystal Phases in Hybrid Metal-Semiconductor Nanowire Devices." Nano Letters, vol. 17, no. 4, pp. 2336–41, 2017, doi: 10.1021/acs.nanolett.6b05223
Zhao, H., et al. "Elucidating Structural Order and Disorder Phenomena in Mullite-Type Al4B2O9 by Automated Electron Diffraction Tomography." Journal of Solid State Chemistry, vol. 249, February, pp. 114–23, 2017, doi: 10.1016/j.jssc.2017.02.023
Mugnaioli, E., et al. "Ab Initio Structure Determination of Cu2- XTe Plasmonic Nanocrystals by Precession-Assisted Electron Diffraction Tomography and HAADF-STEM Imaging." Inorganic Chemistry, vol. 57, no. 16, American Chemical Society, pp. 10241–48, 2018, doi: 10.1021/acs.inorgchem.8b01445
L.Meshi , S.Samuha, et al. "Characterization of Atomic Structures of Nanosized Intermetallic Compounds Using Electron Diffraction Methods" Adv. Mater. 1706704, 2018, doi: 10.1002/adma.201706704
Karakulina, O. M., et al. "In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion Batteries." Nano Letters, vol. 18, no. 10, pp. 6286–91, 2018, doi: 10.1021/acs.nanolett.8b02436
A.Saikumaran, et al. "Microstructural Characterization of Equiatomic CrFeNbNiV Alloy" Trans Indian Inst Met, 2019, doi: 10.1007/s12666-018-1466-x
Klein, H., et al. "The Structure of Nano-Twinned Rhombohedral YCuO 2.66 Solved by Electron Crystallography." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, no. 1, International Union of Crystallography, pp. 107–1, 2019, doi: 10.1107/S205252061801627X
F.Brunet, et al. "Oxidative decomposition products of synthetic NaFePO4 mari_ite: nano-textural and electrochemical characterization" Eur. J. Mineral. 31, 837–842, 2019, doi: 10.1127/ejm/2019/0031-2885
Hadermann, J., et al. "Structure Solution and Refinement of Metal-Ion Battery Cathode Materials Using Electron Diffraction Tomography." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, no. International Union of Crystallography, pp. 485–94, 2019, doi: 10.1107/S2052520619008291
Kaiukov, R., et al. "Cs3Cu4In2Cl13 Nanocrystals: A Perovskite-Related Structure with Inorganic Clusters at A Sites." Inorganic Chemistry, vol. 59, no. 1, pp. 548–54, 2020, doi: 10.1021/acs.inorgchem.9b02834
A. Nowroozi, et al. "High cycle life all-solid-state fluoride ion battery with La2NiO4+d high voltage cathode" COMMUNICATIONS MATERIALS |, 2020, doi: 10.1038/s43246-020-0030-5
S.Toso, et al. "Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures" J. Am. Chem. Soc. 142, 22, 10198–10211, 2020, doi: 10.1021/jacs.0c03577
Jian Li, et al. "Modulated structure determination and ion transport mechanism of oxide-ion conductor CeNbO4+_", Nature Communications, 2020, doi: 10.1038/s41467-020-18481-x
Ercin C. Duran, et al. "The structure of a new nano-phase of lanthanum-doped strontium titanate", Journal of Solid State Chemistry 293 121795, 2021, doi: 10.1016/j.jssc.2020.121795
PROTEINS
M Gemmi, et al. "Ultra Fast Automated TEM Electron Diffraction Tomography", 2013, doi: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S1431927613005497
Nannenga, B. L., et al. "Protein Structure Determination by MicroED." Current Opinion in Structural Biology, vol. 27, no. 1, Elsevier Ltd, pp. 24–31, 2014, doi: 10.1016/j.sbi.2014.03.004
Yonekura, K., et al. "Refinement of Cryo-EM Structures Using Scattering Factors of Charged Atoms." Journal of Applied Crystallography, vol. 49, no. 5, pp. 1517–23, 2016, doi: 10.1107/S1600576716011274
Xu, H., et al. "A Rare Lysozyme Crystal Form Solved Using Highly Redundant Multiple Electron Diffraction Datasets from Micron-Sized Crystals", Structure, pp.1–9, 2018, doi: 10.1016/j.str.2018.02.015
Nannenga, B. L., et al. "The Evolution and the Advantages of MicroED." Frontiers in Molecular Biosciences, vol. 5, no. DEC, pp. 1–5, 2018, doi: 10.3389/fmolb.2018.00114
Max T. B. Clabbers & Jan Pieter Abrahams, et al. Electron diffraction and three-dimensional crystallography for structural biology, Crystallography Reviews, 24:3, 176-204, 2018, doi: 10.1080/0889311X.2018.1446427
R.Barringer, et al. "Illuminating the Secrets of Crystals – Microcrystal Electron Diffraction in Structural Biology Bioscience Volume 11, 2018, doi: 10.1093/biohorizons/hzy013
Max T. B. Clabbers & Jan Pieter Abrahams, et al. Electron diffraction and three-dimensional crystallography for structural biology, Crystallography Reviews, 24:3, 176-204, 2018, doi: 10.1080/0889311X.2018.1446427
Brent L. Nannenga et al., et al. "The evolution and the Advantages of MicroED", Frontiers in Molecular Biosciences | www.frontiersin.org 1 December | Volume 5 | Article 114, 2018, doi: 10.3389/fmolb.2018.00114
Glynn, C., et al. "Data-Driven Challenges and Opportunities in Crystallography." Emerging Topics in Life Sciences, vol. 3, no. 4, pp. 423–32, 2019, doi: 10.1042/etls20180177
Nannenga, B. L., et al. "Microcrystal Electron Diffraction Methodology and Applications." MRS Bulletin, vol. 44, no. 12, pp. 956–60, 2019, doi: 10.1557/mrs.2019.287
Lanza, A., et al. "Nanobeam Precession-Assisted 3D Electron Diffraction Reveals a New Polymorph of Hen Egg-White Lysozyme." IUCrJ, vol. 6, International Union of Crystallography, pp. 178–88, 2019, doi: 10.1107/S2052252518017657
Zatsepin, N. A., et al. "The Complementarity of Serial Femtosecond Crystallography and MicroED for Structure Determination from Microcrystals." Current Opinion in Structural Biology, vol. 58, no. Figure 1, Elsevier Ltd, pp. 286–93, 2019, doi: 10.1016/j.sbi.2019.06.004
Nannenga, B. L., et al. "The Cryo-EM Method Microcrystal Electron Diffraction (MicroED)." Nature Methods, vol. 16, no. 5, Springer US, pp. 369–7, 2019, doi: 10.1038/s41592-019-0395-x
Wolff, A. M., et al. "Comparing Serial X-Ray Crystallography and Microcrystal Electron Diffraction ( MicroED ) as Methods for Routine Structure Determination from Small Macromolecular Crystals." IUCrJ, vol. 7, pp. 306–23, 2020, doi: 10.1107/S205225252000072X
Chi Nguyen1 and Tamir Gonen, et al. "Beyond protein structure determination with MicroED", Current Opinion in Structural Biology 64:1–8, 2020, doi: 10.1016/j.sbi.2020.05.018
MINERALS-ZEOLITES-MOFS
Gemmi, M., et al. "A New Hydrous Al-Bearing Pyroxene as a Water Carrier in Subduction Zones." Earth and Planetary Science Letters, vol. 310, no. 3–4, pp.422–28, 2011, doi: 10.1016/j.epsl.2011.08.019
Bellussi, G., et al. "ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity." Angewandte Chemie – International Edition, vol. 51, no. 3, pp.666–69, 2011, doi: 10.1002/anie.201105496
Jiang, J., et al. "Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43." Science, vol. 333, no. 6046, pp. 1131–34, 2011, doi: 10.1126/science.1208652
Mugnaioli, E., et al. "Ab Initio Structure Determination of Vaterite by Automated Electron Diffraction." Angewandte Chemie – International Edition, vol. 51, no. 28, pp.7041–45, 2012, doi: 10.1002/anie.201200845
Feyand, M., et al. "Automated Diffraction Tomography for the Structure Elucidation of Twinned, Sub-Micrometer Crystals of a Highly Porous, Catalytically Active Bismuth Metal-Organic Framework." Angewandte Chemie – International Edition, vol. 51, no. 41, pp. 10373–76, 2012, doi: 10.1002/anie.201204963
Gemmi, M., et al. "Structure of the New Mineral Sarrabusite, Pb 5CuCl 4(SeO 3) 4, Solved by Manual Electron-Diffraction Tomography." Acta Crystallographica Section B: Structural Science, vol. 68, no. 1, pp. 15–23, 2012, doi: 10.1107/S010876811104688X
López-Marino, S., et al. "ZnSe Etching in Zn-Rich Cu2ZnSnSe4_: An Oxidizing Route for Improvement of Solar Cell Efficiency." Chemistry, A European Journal, vol. 19,no.44,pp.14814–22, 2013, doi: 10.1002/chem.200
Plásil, J., et al. "Crystal Structure of Lead Uranyl Carbonate Mineral Widenmannite: Precession Electron-Diffraction and Synchrotron Powder-Diffraction Study." American Mineralogist, vol. 99, no. 2–3, pp. 276–82, 2014, doi: 10.1515/am.2014.4671
Cora, I., et al. "Electron Crystallographic Study of a Kaolinite Single Crystal." Applied Clay Science, vol. 90, Elsevier B.V., pp. 6–10, 2014, doi: 10.1016/j.clay.2013.12.034
Mugnaioli, E., et al. "Evidence of Noncentrosymmetry of Human Tooth Hydroxyapatite Crystals." Chemistry – A European Journal, vol. 20, no. 23, pp. 6849–52, 2014, doi: 10.1002/chem.201402275
Roussel, P., et al. "Sr4Ru6ClO18, a New Ru4+/5+ Oxy-Chloride, Solved by Precession Electron Diffraction: Electric and Magnetic Behavior." Journal of Solid State Chemistry, vol. 212, Elsevier, pp. 99–106, 2014, doi: 10.1016/j.jssc.2014.01.012
Koch-Müller, M., et al. "Synthesis of a Quenchable High-Pressure Form of Magnetite (h-Fe3O4) with Composition Fel(Fe2+0.75Mg0.26)Fe2(Fe3+0.70Cr0.15Al0.11Si0.04)2O4." American Mineralogist, vol. 99, no. 11–12, pp. 2405–15, 2014, doi: 10.2138/am-2014-4944
Capitani, G. C., et al. "The Bi Sulfates from the Alfenza Mine, Crodo, Italy: An Automatic Electron Diffraction Tomography (ADT) Study." American Mineralogist, vol. 99, no. 2–3, pp. 500–10, 2014, doi: 10.1515/am.2014.4446
Juraj Majzlan, et al. "Crystal structure of Fe2(AsO4)(HAsO4)(OH)(H2O)3, a dehydration product of kankite", Eur. J. Mineral. PrePub Article, PrePub, 2015, doi: 10.1127/ejm/2015/0027-2495
Gennaro Ventruti, et al. "A structural study of cyanotrichite from Dachang by conventional and automated electron diffraction", Phys Chem Minerals, 2015, doi: 10.1007/s00269-015-0751-z
Gemmi, M., et al. "Electron Diffraction Determination of 11.5 Å and HySo Structures: Candidate Water Carriers to the Upper Mantle." American Mineralogist, vol. 101, no. 12, pp. 2645–54, 2016, doi: 10.2138/am-2016-5722
Iezzi, G., et al. "Solid Solution along the Synthetic LiAISi2O6-LiFeSi2O6 (Spodumene-Ferri-Spodumene) Join: A General Picture of Solid Solutions, Bond Lengths, Lattice Strains, Steric Effects, Symmetries, and Chemical Compositions of Li Clinopyroxenes." American Mineralogist, vol. 101, no. 11, pp. 2498–513, 2016, doi: 10.2138/am-2016-5784
Simancas, J., et al. "Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58." Journal of the American Chemical Society, vol. 138, no. 32, pp. 10116–19, 2016, doi: 10.1021/jacs.6b06394
Mugnaioli, E., et al. "Determination of Very Beam-Sensitive Zeolite ITQ-57 by Energy-Filtered Timepix Data." Acta Crystallographica Section A Foundations and Advances, vol. 73, no. a2, pp. C64–C64, 2017, doi: 10.1107/s2053273317095067
Ma, Y., et al. "Electron Crystallography for Determining the Handedness of a Chiral Zeolite Nanocrystal." Nature Materials, vol. 16, no. 7, pp. 755–59, 2017, doi: 10.1038/nmat4890
Gemmi, M., et al. "Structural Model of Cowlesite by Fast Electron Diffraction Tomography." Acta Crystallographica Section A Foundations and Advances, vol. 73, pp. C999–C999, 2017, doi: 10.1107/s2053273317085758
Rozhdestvenskaya, I. V., et al. "The Structure of Denisovite, a Fibrous Nanocrystalline Polytypic Disordered ‘very Complex’ Silicate, Studied by a Synergistic Multi-Disciplinary Approach Employing Methods of Electron Crystallography and X-Ray Powder Diffraction." IUCrJ, vol. 4, no. 100, International Union of Crystallography, pp. 223–42, 2017, doi: 10.1107/S2052252517002585
Németh, P., et al. "A Nanocrystalline Monoclinic CaCO3 Precursor of Metastable Aragonite." Science Advances, vol. 4, no. 12, pp. 1–7, 2018, doi: 10.1126/sciadv.aau6178
Portolés-Gil, N., et al. "Crystalline Curcumin BioMOF Obtained by Precipitation in Supercritical CO2 and Structural Determination by Electron Diffraction Tomography." ACS Sustainable Chemistry and Engineering, vol. 6, no. 9, pp.12309–19, 2018, doi: 10.1021/acssuschemeng.8b02738
Rhauderwiek, T., et al. "Highly Stable and Porous Porphyrin-Based Zirconium and Hafnium Phosphonates-Electron Crystallography as an Important Tool for Structure Elucidation." Chemical Science, vol. 9, no. 24, pp. 5467–78, 2018, doi: 10.1039/c8sc01533c
H.Petersen, et al. "An average structure model of the intermediate phase between sodalite and cancrinite" Z. Kristallogr., 2018, doi: 10.1515/zkri-2018-2114
Mugnaioli, E. and Mauro Gemmi, et al. "Single-Crystal Analysis of Nanodomains by Electron Diffraction Tomography: Mineralogy at the Order-Disorder Borderline." Zeitschrift Fur Kristallographie – Crystalline Materials, vol. 233, no. 3–4, pp.163–78, 2018, doi: 10.1515/zkri-2017-2130
Bieseki, L., et al. "Synthesis and Structure Determination via Ultra-Fast Electron Diffraction of the New Microporous Zeolitic Germanosilicate ITQ-62." Chemical Communications, vol. 54, no. 17, pp. 2122–25, 2018, doi: 10.1039/c7cc09240g
Roqué, J., et al. "Structural Characterization and Ab-Initio Resolution of Natural Occurring Zaccariniite (RhNiAs) by Means of Precession Electron Diffraction." Microchemical Journal, vol. 148, no. December Elsevier, pp. 130–40, 2018, doi: 10.1016/j.microc.2019.04.071
B.Rondeau, et al. "Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompanying lazulite from Mt. Ibity, Madagascar: an example of structural characterization from dynamical refinement of precession electron diffraction data on submicrometre sample" Eur. J. Mineral. 31, 379–388, 2019, doi: 10.1127/ejm/2019/0031-2817
Lanza, A. E., et al. "Daliranite, PbHgAs 2 S 5: Determination of the Incommensurately Modulated Structure and Revision of the Chemical Formula." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, pp. 711–16, 2019, doi: 10.1107/S2052520619007340
Bodach, A., et al. "Electron Diffraction Tomography and X-Ray Powder Diffraction on Photoredox Catalyst PDI." CrystEngComm, vol. 21, no. 15, Royal Society of Chemistry,pp.2571–75, 2019, doi: 10.1039/C8CE02026D
Campanale, F., et al. "Evidence for Subsolidus Quartz-Coesite Transformation in Impact Ejecta from the Australasian Tektite Strewn Field." Geochimica et Cosmochimica Acta, vol. 264, The Author(s), pp. 105–17, 2019, doi: 10.1016/j.gca.2019.08.014
Benjamin Rondea, et al. "Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompanying lazulite from Mt. Ibity, Madagascar: an example of structural characterization from dynamical refinement of precession electron diffraction data on sub-micrometre sample", Eur. J. Mineral. 31, 379–388, 2019, doi: 10.1127/ejm/2019/0031-2817
S Plana-Ruiz, et al. "Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement", 2020, doi: https://www.sciencedirect.com/science/article/pii/S0304399119303663
Huang, Z., et al. "Can 3D Electron Diffraction Provide Accurate Atomic Structures of Metal-Organic Frameworks?" Faraday Discussions, pp. 0–14, 2020, doi: 10.1039/d0fd00015a
A.Mayoral, et al. "Direct atomic level imaging of Zeolites: Oxygen, Na in Na-LTA and Fe in Fe-MFI" Angew. Chem. Int. Ed. 10.1002/anie.202006122, 2020, doi: 10.1002/anie.202006122
B.Q.Lu, et al. "Introducing the crystalline phase of dicalcium phosphate monohydrate" NATURE COMMUNICATIONS | 11:1546, 2020, doi: 10.1038/s41467-020-15333-6
Y.Krusiak, et al. "New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy"IUCrJ . 7, 522–534, 2020, doi: 10.1107/S2052252520003991
Tu Sun, et al. "Direct-Space Structure Determination of Covalent Organic Frameworks from 3D Electron Diffraction Data", Angew. Chem. Int. Ed.,, 2020, doi: 10.1002/anie.202009922
Donghui Jo, et al. "PST-24: A Zeolite with Varying Intracrystalline Channel Dimensionality’, Angewandte Chemie International Edition,, 2020, doi: 10.1002/anie.202007804
Isabella Pignatelli, et al. "The effect of the starting mineralogical mixture on the nature of Fe-serpentines obtained during hydrothermal synthesis at 90°C", Clays and Clay Minerals 23 Sept, 2020, doi: 10.1007/s42860-020-00080-y
Zhehao Huang, et al. "Three-dimensional electron diffraction for porous crystalline materials: structural determination and beyond", The Royal Society of Chemistry, 2020, doi: 10.1039/d0sc05731b
Maxime Debost, et al. "Synthesis of Discrete CHA Zeolite Nanocrystals without Organic Templates for Selective CO2 Capture", Angew. Chem. Int. Ed. 59, 23491–23495, 2020, doi: 10.1002/anie.202009397
Jörg Fritz, et al. "Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments", American Mineralogist, Volume 105, pages 1704–1711, 05.00, 2020, doi: 10.2138/am-2020-7393
Jordi Rius, et al. "Structural study of decrespignyite-(Y), a complex yttrium are earth copper carbonate chloride, by three-dimensional electron and synchrotron powder diffraction", Eur. J. Mineral., 32, 545–555,, 2020, doi: 10.5194/ejm-32-545-2020
Fahui Xiong, et al. "Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for super-reduced mantle-derived fluids?", Eur. J. Mineral., 32, 557–574,, 2020, doi: 10.5194/ejm-32-557-2020
Enrico Mugnaioli, et al. "The structure of kaliophilite KAlSiO4, a long-lasting crystallographic problem", IUCrJ . 7, 1070–108, 2020, doi: 10.1107/S2052252520012270
Zhehao Huang, et al. "Can 3D electron diffraction provide accurate atomic structures of metal – organic frameworks?", The Royal Society of Chemistry, 2020, doi: 10.1039/d0fd00015a
Sven Hovmoller, et al. "Twinning and intertwined microcrystals in an intriguing, yet elusive, mineral", IUCrJ . 7, 951–952, 2020, doi: 10.1107/S2052252520014293
Enrico Mugnaioli, et al. "Electron Diffraction on Flash-Frozen Cowlesite Reveals the Structure of the First Two-Dimensional Natural Zeolite", ACS Cent. Sci. 6, 1578-158, 2020, doi: 10.1021/acscentsci.9b01100
Elina Kapaca, et al. A journey towards complete structure determination of zeolites by electron crystallography methods", Doctoral Thesis in Inorganic Chemistry, Stockholm, 2020, doi:
Stefano Toso, et al. "Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures", J. Am. Chem. Soc. 142, 10198_10211, 2020, doi: 10.1021/jacs.0c03577
Gennaro Ventruti, et al. "High_temperature study of basic ferric sulfate, FeOHSO4", Physics and Chemistry of Minerals 47:43, 2020, doi: 10.1007/s00269-020-01113-7
Rohit Kumar Dev and Parashuram Mishra, et al. "Synthesis and ab initio Determination of Bi1.25 V0.123 Ca 0.245 N1.24 O8 cubic structure via powder X-ray diffraction data", World Journal of Advanced Research and Reviews, 07(03), 142–154, 2020, doi: 10.30574/wjarr.2020.7.3.0333
Zhehao Huang, et al. "3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic Frameworks", Coordination Chemistry Reviews 427 213583, 2021, doi: 10.1016/j.ccr.2020.213583
Gwladys Steciuk, et al. "Hydrogen disorder in kaatialaite Fe[AsO2(OH)2]5H2O from Ja´chymov, Czech Republic: determination from low-temperature 3D electron diffraction", IUCrJ 8, 2021, doi: 10.1107/S2052252520015626
ORGANIC-PHARMACEUTICALS
Schmidt, M. U., et al. "Electron Diffraction, X-Ray Powder Diffraction and Pair-Distribution- Function Analyses to Determine the Crystal Structures of Pigment Yellow 213, C23H21N5O9." Acta Crystallographica Section B: Structural Science, vol. 65, no. 2, pp. 189–99,, 2009, doi: 10.1107/S0108768109003759
Gorelik, T., et al. "Using Electron Diffraction to Solve the Crystal Structure of a Laked Azo Pigment." Crystal Growth and Design, vol. 9, no. 9, pp. 3898–903, 2009, doi: 10.1021/cg801099r
Gorelik, T., et al. "H-Bonding Schemes of Di-and Tri-p-Benzamides Assessed by a Combination of Electron Diffraction, X-Ray Powder Diffraction and Solid-State NMR." CrystEngComm, vol. 12, no. 6, pp. 1824–32, 2010, doi: 10.1039/b920569a
Kolb, U., et al. "Structural Characterization of Organics Using Manual and Automated Electron Diffraction." Polymer Reviews, vol. 50, no. 3, pp. 385–409, 2010, doi: 10.1080/15583724.2010.494238
Gorelik, T. E., et al. "Ab-Initio Crystal Structure Analysis and Refinement Approaches of Oligo p-Benzamides Based on Electron Diffraction Data." Acta Crystallographica Section B: Structural Science, vol. 68, no. 2, International Union of Crystallography, pp. 171–81, 2012, doi: 10.1107/S0108768112003138
Gorelik, T. E., et al. "Detecting Crystalline Nonequilibrium Phases on the Nanometer Scale." Crystal Growth and Design, vol. 12, no. 6, pp. 3239–42, 2012, doi: 10.1021/cg300377j
Förster, C., et al. "Crystalline Non-Equilibrium Phase of a Cobalt(II) Complex with Tridentate Ligands." European Journal of Inorganic Chemistry, vol. no. 6, pp.920–24, 2015, doi: 10.1002/ejic.201403200
Van Genderen, E., et al. "Ab Initio Structure Determination of Nanocrystals of Organic Pharmaceutical Compounds by Electron Diffraction at Room Temperature Using a Timepix Quantum Area Direct Electron Detector." Acta Crystallographica Section A: Foundations and Advances, vol. 72, International Union of Crystallography, pp.236–42, 2016, doi: 10.1107/S2053273315022500
Gorelik, T. E., et al. "Crystal Structure of Disordered Nanocrystalline _II-Quinacridone Determined by Electron Diffraction." CrystEngComm, vol. 18, no. 4, Royal Society of Chemistry, pp. 529–35, 2016, doi: 10.1039/c5ce01855b
Wilke, M., et al. "The Crystallisation of Copper(II) Phenylphosphonates." Dalton Transactions, vol. 45, no. 43, Royal Society of Chemistry, pp. 17453–63, 2016, doi: 10.1039/c6dt02904c
Wang, Y., et al. "Elucidation of the Elusive Structure and Formula of the Active Pharmaceutical Ingredient Bismuth Subgallate by Continuous Rotation Electron Diffraction." Chemical Communications, vol. 53, no. 52, pp. 7018–21, 2017, doi: 10.1039/c7cc03180g
Das, P. P., et al. "Crystal Structures of Two Important Pharmaceuticals Solved by 3D Precession Electron Diffraction Tomography." Organic Process Research and Development, vol. 22, no. 10, American Chemical Society, pp. 1365–72, 2018, doi: 10.1021/acs.oprd.8b00149
Gruene, T., et al. "Rapid Structure Determination of Microcrystalline Molecular Compounds Using Electron Diffraction." Angewandte Chemie – International Edition, vol. 57, no. 50, pp. 16313–17, 2018, doi: 10.1002/anie.201811318
Jones, C. G., et al. "The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination." ACS Central Science, vol. 4, no. 11, pp. 1587–92, 2018, doi: 10.1021/acscentsci.8b00760
Kunde, T., et al. "Microcrystal Electron Diffraction (MicroED) for Small-Molecule Structure Determination." Angewandte Chemie – International Edition, vol. 58, no. 3,pp.666–68, 2019, doi: 10.1002/anie.201813215
Clabbers, M. T. B., et al. "Reducing Dynamical Electron Scattering Reveals Hydrogen Atoms." Acta Crystallographica Section A: Foundations and Advances, vol. 75, no. 1, International Union of Crystallography, pp. 82–93, 2019, doi: 10.1107/S2053273318013918
Jones, C. G., et al. "Characterization of Reactive Organometallic Species via MicroED." ACS Central Science, vol. 5, no. 9, pp. 1507–13, 2019, doi: 10.1021/acscentsci.9b00403
Andrusenko, I., et al. "The Crystal Structure of Orthocetamol Solved by 3D Electron Diffraction." Angewandte Chemie – International Edition, vol. 58, no. 32, pp.10919–22, 2019, doi: 10.1002/anie.201904564
Guzmán-Afonso, C., et al. "Understanding Hydrogen-Bonding Structures of Molecular Crystals via Electron and NMR Nanocrystallography." Nature Communications, vol. 10, no. 1, Springer US, pp. 1–10, 2019, doi: 10.1038/s41467-019-11469-2
Broadhurst, E. T., et al. "Polymorph Evolution during Crystal Growth Studied by 3D Electron Diffraction." IUCrJ, vol. 7, pp. 5–9, 2020, doi: 10.1107/S2052252519016105
Gemmi, M., et al. "A New Method Based on Electron Diffraction for Detecting Nanoparticles in Injectable Medicines." Journal of Pharmaceutical Sciences, vol. 109, no. 1, Elsevier Ltd, pp. 891–99, 2020, doi: 10.1016/j.xphs.2019.07.008
Iryna Andrusenko, et al. "A new olanzapine cocrystal obtained from volatile deep eutectic solvents and determined by 3D electron diffraction", Acta Cryst. . B76, 1036–1044, 2020, doi: 10.1107/S2052520620012779
Victoria Hamilton, et al. "Racemic Conglomerate Formation via Crystallization of Metaxalone from Volatile Deep Eutectic Solvents", Cryst. Growth Des. 20, 4731_4739, 2020, doi: 10.1021/acs.cgd.0c00497
Emma Danelius, et al. "MicroED in natural product and small molecule research", The Royal Society of Chemistry, 2020, doi: 10.1039/d0np00035c