ADT (3D ELECTRON DIFFRACTION TOMOGRAPHY) LITERATURE

ABSOLUTE CONFIGURATION- DYNAMICAL REFINMENTS

  • Palatinus, L., et al. "An Incommensurately Modulated Structure of _’-Phase of Cu3+xSi Determined by Quantitative Electron Diffraction Tomography." Inorganic Chemistry, vol. 50, no. 8, pp. 3743–51, 2011, doi: 10.1021/ic200102z

  • Palatinus, L., et al. "structural refinement from precession electron diffraction data" Acta Cryst a69, 171-188, 2013, doi: 10.1107/S010876731204946X

  • Palatinus, L., et al. " structural refinement using precession electron diffraction tomography and dynamical diffraction : tests on experimental data" Acta Cryst B71, 740-751, 2015, doi: 10.1107/S2052520615017023

  • Palatinus, L., et al. "Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Theory and Implementation." Acta Crystallographica Section A: Foundations and Advances, vol. 71, pp. 235–44, 2015, doi: 10.1107/S2053273315001266

  • Ma, Y., et al. "Electron Crystallography for Determining the Handedness of a Chiral Zeolite Nanocrystal." Nature Materials, vol. 16, no. 7, pp. 755–59, 2017, doi: 10.1038/nmat4890

  • McCusker, L. B., et al. "Electron Diffraction and the Hydrogen Atom: Dynamical Refinement with Electron-Diffraction Data Reveals Hydrogen Atom Positions." Science, vol. 355, no. 6321, p. 136, 2017, doi: 10.1126/science.aal4570

  • Palatinus, L., et al. "Hydrogen Positions in Single Nanocrystals Revealed by Electron Diffraction." Science, vol. 355, no. 6321, pp. 166–69, 2017, doi: 10.1126/science.aak9652

  • E Mugnaioli, et al. "Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline", 2018, doi: https://www.degruyter.com/document/doi/10.1515/zkri-2017-2130/html

  • Brázda, P., et al. "Electron Diffraction Determines Molecular Absolute Configuration in a Pharmaceutical Nanocrystal." Science, vol. 364, no. 6441, pp. 667–69, 2019, doi: 10.1126/science.aaw2560

  • P Brázda, et al. "Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal", 2019, doi: DOI: 10.1126/science.aaw2560

  • M. Maslyk, et al. "Multistep Crystallization Pathways in the Ambient‐Temperature Synthesis of a New Alkali‐Activated Binder", 2021, doi: https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202108126

ARCHAEOLOGY

  • Zacharias, N., et al. "A Novelty for Cultural Heritage Material Analysis: Transmission Electron Microscope (TEM) 3D Electron Diffraction Tomography Applied to Roman Glass Tesserae." Microchemical Journal, vol. 138, Elsevier B.V., pp. 19–25, 2018, doi: 10.1016/j.microc.2017.12.023

  • S. Nicolopoulos, et al. "Novel characterization techniques for Cultural Heritage using a TEM orientation imaging in combination with 3D precession diffraction tomography: A case study of green and white ancient Roman glass tesserae" Heritage Science 6:64, 2018, doi: 10.1186/s40494-018-0229-7

  • S. Nicolopoulos, et al. "Novel TEM Microscopy and Electron Diffraction Techniques to Characterize Cultural Heritage Materials: From Ancient Greek Artefacts to Maya Mural Paintings." Scanning, vol., 2019, doi: 10.1155/2019/4870695

INSTRUMENTATION AND TECHNIQUES

  • Kolb, U., et al. "Towards Automated Diffraction Tomography: Part I-Data Acquisition." Ultramicroscopy, vol. 107, no. 6–7, pp. 507–13, 2007, doi: 10.1016/j.ultramic.2006.10.007

  • Kolb, U., et al. "Towards Automated Diffraction Tomography. Part II-Cell Parameter Determination." Ultramicroscopy, vol. 108, no. 8, pp. 763–72, 2008, doi: 10.1016/j.ultramic.2007.12.002

  • Mugnaioli, E., et al. "‘Ab Initio’ Structure Solution from Electron Diffraction Data Obtained by a Combination of Automated Diffraction Tomography and Precession Technique." Ultramicroscopy, vol. 109, no. 6, pp. 758–65, 2009, doi: 10.1016/j.ultramic.2009.01.011

  • Gorelik, T. E., et al. "Structure Solution with Automated Electron Diffraction Tomography Data: Different Instrumental Approaches." Journal of Microscopy, vol. 244, no. 3, pp. 325–31, 2011, doi: 10.1111/j.1365-2818.2011.03550.x

  • U.Kolb, et al. "automated electron diffraction tomography-a new tool for nanocrystal structure analysis" Cryst. Res.Techolog. 46, 6, 542-554, 2011, doi: 10.1002/crat.201100036

  • Rius, J., et al. "Application of _ Recycling to Electron Automated Diffraction Tomography Data from Inorganic Crystalline Nanovolumes." Acta Crystallographica Section A: Foundations of Crystallography, vol. 69, no. 4, pp.396–407, 2013, doi: 10.1107/S0108767313009549

  • Kolb, U., et al. "The Benefit of Automated Electron Diffraction Tomography (ADT) for Nano Science." Microscopy and Microanalysis, vol. 19, no. S2, pp. 318–19, 2013, doi: 10.1017/s1431927613003589

  • Mugnaioli, E., et al. "Closing the Gap between Electron and X-Ray Crystallography." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 71, International Union of Crystallography, pp. 737–39, 2015, doi: 10.1107/S2052520615022441

  • Gemmi, M.,, et al. "Fast Electron Diffraction Tomography." Journal of Applied Crystallography, vol. 48, no. i, pp. 718–27, 2015, doi: 10.1107/S1600576715004604

  • Bowden, D., et al. "A High-Strength Silicide Phase in a Stainless Steel Alloy Designed for Wear-Resistant Applications." Nature Communications, vol. 9, no. 1, Springer US,pp.1–10, 2018, doi: 10.1038/s41467-018-03875-9

  • Gemmi, M., et al. "3D Electron Diffraction Techniques." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, International Union of Crystallography, pp. 495–504, 2019, doi: 10.1107/S2052520619007510

  • Gemmi, M., et al. "3D Electron Diffraction: The Nanocrystallography Revolution." ACS Central Science, vol. 5, no. 8, pp. 1315–29, 2019, doi: 10.1021/acscentsci.9b00394

  • Kolb, U., et al. "Automated Electron Diffraction Tomography – Development and Applications." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, International Union of Crystallography, pp.463–74, 2019, doi: 10.1107/S2052520619006711

  • Delimitis, A., et al. "Geometry Determination and Refinement in the Rotation Electron Diffraction Technique." Ultramicroscopy, vol. 201, Elsevier B.V., pp. 68–76, 2019, doi: 10.1016/j.ultramic.2019.02.011

  • Kodjikian, S., et al. "Low-Dose Electron Diffraction Tomography (LD-EDT)." Ultramicroscopy, vol. 200, no. February, pp. 12–19, 2019, doi: 10.1016/j.ultramic.2019.02.010

  • Mugnaioli, E., et al. "Structure Analysis of Materials at the Order-Disorder Borderline Using Three-Dimensional Electron Diffraction." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, International Union of Crystallography, pp. 550–63, 2019, doi: 10.1107/S2052520619007339

  • Plana-Ruiz, S., et al. "Fast-ADT: A Fast and Automated Electron Diffraction Tomography Setup for Structure Determination and Refinement." Ultramicroscopy, vol. 211, no. January, Elsevier B.V., p. 112951, 2020, doi: 10.1016/j.ultramic.2020.112951

  • Erik Fröjdh, et al. "Discrimination of Aluminum from Silicon by Electron Crystallography with the JUNGFRAU Detector", Crystals 10, 1148, 2020, doi: 10.3390/cryst10121148

  • S Plana Ruiz - 2021 - diposit.ub.edu, et al. "Development & Implementation of an Electron Diffraction Approach for Crystal Structure Analysis", 2021, doi: http://diposit.ub.edu/dspace/handle/2445/174175

  • T. Gruene, et al. "3D Electron Diffraction for Chemical Analysis: Instrumentation Developments and Innovative Applications", 2021, doi: https://doi.org/10.1021/acs.chemrev.1c00207

  • F. Papi, et al. "Crystal Structure of a Peculiar Polycyclic Aromatic Hydrocarbon Determined by 3D Electron Diffraction", 2021, doi: https://pubs.acs.org/doi/10.1021/acs.cgd.1c00820

  • M. Quintelier, et al. "Determination of Spinel Content in Cycled Li1. 2Ni0. 13Mn0. 54Co0. 13O2 Using Three-Dimensional Electron Diffraction and Precession Electron Diffraction", 2021, doi: https://www.mdpi.com/2073-8994/13/11/1989

  • P Gollé-Leidreiter,, et al. "Crystal structure determination of a new LaPO4 phase in a multicomponent glass ceramic via 3D electron diffraction", 2021, doi: https://www.sciencedirect.com/science/article/pii/S0272884221033046?via%3Dihub

  • D. Marchetti, et al. "Combined Approach of Mechanochemistry and Electron Crystallography for the Discovery of 1D and 2D Coordination Polymers", 2021, doi: https://pubs.acs.org/doi/10.1021/acs.cgd.1c01058

NANOMATERIALS – SEMICONDUCTORS– OXIDES

  • Birkel, C. S., et al. "Solution Synthesis of a New Thermoelectric Zn1+ XSb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography." Journal of the American Chemical Society, vol. 132, no. 28, pp.9881–89, 2010, doi: 10.1021/ja1035122

  • Sedlmaier, S. J., et al. "SrP3N5O: A Highly Condensed Layer Phosphate Structure Solved from a Nanocrystal by Automated Electron Diffraction Tomography." Chemistry – A European Journal, vol. 17, no. 40, pp. 11258–65, 2011, doi: 10.1002/chem.201101545

  • Mugnaioli, E., et al. "Ba6P12N17O9Br3- A Column-Type Phosphate Structure Solved from Single-Nanocrystal Data Obtained by Automated Electron Diffraction Tomography." European Journal of Inorganic Chemistry, no. 1, pp. 121–25, 2012, doi: 10.1002/ejic.201101149

  • Sarakinou, E., et al. "Structure Characterization of Hard Materials by Precession Electron Diffraction and Automatic Diffraction Tomography: 6H-SiC Semiconductor and Ni 1+xTe 1embedded Nanodomains." Semiconductor Science and Technology, vol. 27, no. 10,, 2012, doi: 10.1088/0268-1242/27/10/105003

  • D.Viladot, et al. "Hafnium-Silicon precipitate structure determination in a new heat resistant ferritic alloy by precession electron diffraction technique" Microsc. Micoanalysis,, 2013, doi: 10.1017/S1431927613013627

  • P.Boullay, et al. "precession electron diffraction tomography for solving complex modulated structures : the case of Bi5Nb3O15" Inorg. Chem. 52, 6127-6135, 2013, doi: 10.1021/ic400529s

  • Samuha, S., et al. "Atomic Structure Solution of the Complex Quasicrystal Approximant Al77Rh15Ru8 from Electron Diffraction Data." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 70, no. 6, pp. 999–1005, 2014, doi: 10.1107/S2052520614022033

  • Hoshyargar, F., et al. "Structure Analysis on the Nanoscale: Closed WS2 Nanoboxes through a Cascade of Topo- and Epitactic Processes." CrystEngComm, vol. 16, no. 23,pp.5087–92, 2014, doi: 10.1039/c4ce00326h

  • Bhat, S., et al. "High-Pressure Synthesis of Novel Boron Oxynitride B6N4O3 with Sphalerite Type Structure." Chemistry of Materials, vol. 27, no. 17, pp. 5907–14, 2015, doi: 10.1021/acs.chemmater.5b01706

  • Mugnaioli, E., et al. "(Na,_)5[MnO2]13 Nanorods: A New Tunnel Structure for Electrode Materials Determined Ab Initio and Refined through a Combination of Electron and Synchrotron Diffraction Data." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 72, no. 6, pp. 893–903, 2016, doi: 10.1107/S2052520616015651

  • Mugnaioli, E., et al. " (Na &Squ;)5 ( MnO2)13 nanorods: a new tunnel structure for electrode materials determined ab initio and refined through a combination of electron and synchtrotron diffraction data Acta Cryst B72, 893-903, 2016, doi: 10.1107/S2052520616015651

  • Tahir, M. N., et al. "Hierachical Ni@Fe2O3 Superparticles through Epitaxial Growth of _-Fe2O3 Nanorods on: In Situ Formed Ni Nanoplates." Nanoscale, vol. 8, no. 18, Royal Society of Chemistry, pp. 9548–55, 2016, doi: 10.1039/c6nr00065g

  • David, J., et al. "Crystal Phases in Hybrid Metal-Semiconductor Nanowire Devices." Nano Letters, vol. 17, no. 4, pp. 2336–41, 2017, doi: 10.1021/acs.nanolett.6b05223

  • Zhao, H., et al. "Elucidating Structural Order and Disorder Phenomena in Mullite-Type Al4B2O9 by Automated Electron Diffraction Tomography." Journal of Solid State Chemistry, vol. 249, February, pp. 114–23, 2017, doi: 10.1016/j.jssc.2017.02.023

  • Mugnaioli, E., et al. "Ab Initio Structure Determination of Cu2- XTe Plasmonic Nanocrystals by Precession-Assisted Electron Diffraction Tomography and HAADF-STEM Imaging." Inorganic Chemistry, vol. 57, no. 16, American Chemical Society, pp. 10241–48, 2018, doi: 10.1021/acs.inorgchem.8b01445

  • L.Meshi , S.Samuha, et al. "Characterization of Atomic Structures of Nanosized Intermetallic Compounds Using Electron Diffraction Methods" Adv. Mater. 1706704, 2018, doi: 10.1002/adma.201706704

  • Karakulina, O. M., et al. "In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion Batteries." Nano Letters, vol. 18, no. 10, pp. 6286–91, 2018, doi: 10.1021/acs.nanolett.8b02436

  • A.Saikumaran, et al. "Microstructural Characterization of Equiatomic CrFeNbNiV Alloy" Trans Indian Inst Met, 2019, doi: 10.1007/s12666-018-1466-x

  • Klein, H., et al. "The Structure of Nano-Twinned Rhombohedral YCuO 2.66 Solved by Electron Crystallography." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, no. 1, International Union of Crystallography, pp. 107–1, 2019, doi: 10.1107/S205252061801627X

  • F.Brunet, et al. "Oxidative decomposition products of synthetic NaFePO4 mari_ite: nano-textural and electrochemical characterization" Eur. J. Mineral. 31, 837–842, 2019, doi: 10.1127/ejm/2019/0031-2885

  • Hadermann, J., et al. "Structure Solution and Refinement of Metal-Ion Battery Cathode Materials Using Electron Diffraction Tomography." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, no. International Union of Crystallography, pp. 485–94, 2019, doi: 10.1107/S2052520619008291

  • Kaiukov, R., et al. "Cs3Cu4In2Cl13 Nanocrystals: A Perovskite-Related Structure with Inorganic Clusters at A Sites." Inorganic Chemistry, vol. 59, no. 1, pp. 548–54, 2020, doi: 10.1021/acs.inorgchem.9b02834

  • A. Nowroozi, et al. "High cycle life all-solid-state fluoride ion battery with La2NiO4+d high voltage cathode" COMMUNICATIONS MATERIALS |, 2020, doi: 10.1038/s43246-020-0030-5

  • S.Toso, et al. "Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures" J. Am. Chem. Soc. 142, 22, 10198–10211, 2020, doi: 10.1021/jacs.0c03577

  • Jian Li, et al. "Modulated structure determination and ion transport mechanism of oxide-ion conductor CeNbO4+_", Nature Communications, 2020, doi: 10.1038/s41467-020-18481-x

  • Ercin C. Duran, et al. "The structure of a new nano-phase of lanthanum-doped strontium titanate", Journal of Solid State Chemistry 293 121795, 2021, doi: 10.1016/j.jssc.2020.121795

PROTEINS

  • M Gemmi, et al. "Ultra Fast Automated TEM Electron Diffraction Tomography", 2013, doi: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S1431927613005497

  • Nannenga, B. L., et al. "Protein Structure Determination by MicroED." Current Opinion in Structural Biology, vol. 27, no. 1, Elsevier Ltd, pp. 24–31, 2014, doi: 10.1016/j.sbi.2014.03.004

  • Yonekura, K., et al. "Refinement of Cryo-EM Structures Using Scattering Factors of Charged Atoms." Journal of Applied Crystallography, vol. 49, no. 5, pp. 1517–23, 2016, doi: 10.1107/S1600576716011274

  • Xu, H., et al. "A Rare Lysozyme Crystal Form Solved Using Highly Redundant Multiple Electron Diffraction Datasets from Micron-Sized Crystals", Structure, pp.1–9, 2018, doi: 10.1016/j.str.2018.02.015

  • Nannenga, B. L., et al. "The Evolution and the Advantages of MicroED." Frontiers in Molecular Biosciences, vol. 5, no. DEC, pp. 1–5, 2018, doi: 10.3389/fmolb.2018.00114

  • Max T. B. Clabbers & Jan Pieter Abrahams, et al. Electron diffraction and three-dimensional crystallography for structural biology, Crystallography Reviews, 24:3, 176-204, 2018, doi: 10.1080/0889311X.2018.1446427

  • R.Barringer, et al. "Illuminating the Secrets of Crystals – Microcrystal Electron Diffraction in Structural Biology Bioscience Volume 11, 2018, doi: 10.1093/biohorizons/hzy013

  • Max T. B. Clabbers & Jan Pieter Abrahams, et al. Electron diffraction and three-dimensional crystallography for structural biology, Crystallography Reviews, 24:3, 176-204, 2018, doi: 10.1080/0889311X.2018.1446427

  • Brent L. Nannenga et al., et al. "The evolution and the Advantages of MicroED", Frontiers in Molecular Biosciences | www.frontiersin.org 1 December | Volume 5 | Article 114, 2018, doi: 10.3389/fmolb.2018.00114

  • Glynn, C., et al. "Data-Driven Challenges and Opportunities in Crystallography." Emerging Topics in Life Sciences, vol. 3, no. 4, pp. 423–32, 2019, doi: 10.1042/etls20180177

  • Nannenga, B. L., et al. "Microcrystal Electron Diffraction Methodology and Applications." MRS Bulletin, vol. 44, no. 12, pp. 956–60, 2019, doi: 10.1557/mrs.2019.287

  • Lanza, A., et al. "Nanobeam Precession-Assisted 3D Electron Diffraction Reveals a New Polymorph of Hen Egg-White Lysozyme." IUCrJ, vol. 6, International Union of Crystallography, pp. 178–88, 2019, doi: 10.1107/S2052252518017657

  • Zatsepin, N. A., et al. "The Complementarity of Serial Femtosecond Crystallography and MicroED for Structure Determination from Microcrystals." Current Opinion in Structural Biology, vol. 58, no. Figure 1, Elsevier Ltd, pp. 286–93, 2019, doi: 10.1016/j.sbi.2019.06.004

  • Nannenga, B. L., et al. "The Cryo-EM Method Microcrystal Electron Diffraction (MicroED)." Nature Methods, vol. 16, no. 5, Springer US, pp. 369–7, 2019, doi: 10.1038/s41592-019-0395-x

  • Wolff, A. M., et al. "Comparing Serial X-Ray Crystallography and Microcrystal Electron Diffraction ( MicroED ) as Methods for Routine Structure Determination from Small Macromolecular Crystals." IUCrJ, vol. 7, pp. 306–23, 2020, doi: 10.1107/S205225252000072X

  • Chi Nguyen1 and Tamir Gonen, et al. "Beyond protein structure determination with MicroED", Current Opinion in Structural Biology 64:1–8, 2020, doi: 10.1016/j.sbi.2020.05.018

MINERALS-ZEOLITES-MOFS

  • Gemmi, M., et al. "A New Hydrous Al-Bearing Pyroxene as a Water Carrier in Subduction Zones." Earth and Planetary Science Letters, vol. 310, no. 3–4, pp.422–28, 2011, doi: 10.1016/j.epsl.2011.08.019

  • Bellussi, G., et al. "ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity." Angewandte Chemie – International Edition, vol. 51, no. 3, pp.666–69, 2011, doi: 10.1002/anie.201105496

  • Jiang, J., et al. "Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43." Science, vol. 333, no. 6046, pp. 1131–34, 2011, doi: 10.1126/science.1208652

  • Mugnaioli, E., et al. "Ab Initio Structure Determination of Vaterite by Automated Electron Diffraction." Angewandte Chemie – International Edition, vol. 51, no. 28, pp.7041–45, 2012, doi: 10.1002/anie.201200845

  • Feyand, M., et al. "Automated Diffraction Tomography for the Structure Elucidation of Twinned, Sub-Micrometer Crystals of a Highly Porous, Catalytically Active Bismuth Metal-Organic Framework." Angewandte Chemie – International Edition, vol. 51, no. 41, pp. 10373–76, 2012, doi: 10.1002/anie.201204963

  • Gemmi, M., et al. "Structure of the New Mineral Sarrabusite, Pb 5CuCl 4(SeO 3) 4, Solved by Manual Electron-Diffraction Tomography." Acta Crystallographica Section B: Structural Science, vol. 68, no. 1, pp. 15–23, 2012, doi: 10.1107/S010876811104688X

  • López-Marino, S., et al. "ZnSe Etching in Zn-Rich Cu2ZnSnSe4_: An Oxidizing Route for Improvement of Solar Cell Efficiency." Chemistry, A European Journal, vol. 19,no.44,pp.14814–22, 2013, doi: 10.1002/chem.200

  • Plásil, J., et al. "Crystal Structure of Lead Uranyl Carbonate Mineral Widenmannite: Precession Electron-Diffraction and Synchrotron Powder-Diffraction Study." American Mineralogist, vol. 99, no. 2–3, pp. 276–82, 2014, doi: 10.1515/am.2014.4671

  • Cora, I., et al. "Electron Crystallographic Study of a Kaolinite Single Crystal." Applied Clay Science, vol. 90, Elsevier B.V., pp. 6–10, 2014, doi: 10.1016/j.clay.2013.12.034

  • Mugnaioli, E., et al. "Evidence of Noncentrosymmetry of Human Tooth Hydroxyapatite Crystals." Chemistry – A European Journal, vol. 20, no. 23, pp. 6849–52, 2014, doi: 10.1002/chem.201402275

  • Roussel, P., et al. "Sr4Ru6ClO18, a New Ru4+/5+ Oxy-Chloride, Solved by Precession Electron Diffraction: Electric and Magnetic Behavior." Journal of Solid State Chemistry, vol. 212, Elsevier, pp. 99–106, 2014, doi: 10.1016/j.jssc.2014.01.012

  • Koch-Müller, M., et al. "Synthesis of a Quenchable High-Pressure Form of Magnetite (h-Fe3O4) with Composition Fel(Fe2+0.75Mg0.26)Fe2(Fe3+0.70Cr0.15Al0.11Si0.04)2O4." American Mineralogist, vol. 99, no. 11–12, pp. 2405–15, 2014, doi: 10.2138/am-2014-4944

  • Capitani, G. C., et al. "The Bi Sulfates from the Alfenza Mine, Crodo, Italy: An Automatic Electron Diffraction Tomography (ADT) Study." American Mineralogist, vol. 99, no. 2–3, pp. 500–10, 2014, doi: 10.1515/am.2014.4446

  • Juraj Majzlan, et al. "Crystal structure of Fe2(AsO4)(HAsO4)(OH)(H2O)3, a dehydration product of kankite", Eur. J. Mineral. PrePub Article, PrePub, 2015, doi: 10.1127/ejm/2015/0027-2495

  • Gennaro Ventruti, et al. "A structural study of cyanotrichite from Dachang by conventional and automated electron diffraction", Phys Chem Minerals, 2015, doi: 10.1007/s00269-015-0751-z

  • Gemmi, M., et al. "Electron Diffraction Determination of 11.5 Å and HySo Structures: Candidate Water Carriers to the Upper Mantle." American Mineralogist, vol. 101, no. 12, pp. 2645–54, 2016, doi: 10.2138/am-2016-5722

  • Iezzi, G., et al. "Solid Solution along the Synthetic LiAISi2O6-LiFeSi2O6 (Spodumene-Ferri-Spodumene) Join: A General Picture of Solid Solutions, Bond Lengths, Lattice Strains, Steric Effects, Symmetries, and Chemical Compositions of Li Clinopyroxenes." American Mineralogist, vol. 101, no. 11, pp. 2498–513, 2016, doi: 10.2138/am-2016-5784

  • Simancas, J., et al. "Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58." Journal of the American Chemical Society, vol. 138, no. 32, pp. 10116–19, 2016, doi: 10.1021/jacs.6b06394

  • Mugnaioli, E., et al. "Determination of Very Beam-Sensitive Zeolite ITQ-57 by Energy-Filtered Timepix Data." Acta Crystallographica Section A Foundations and Advances, vol. 73, no. a2, pp. C64–C64, 2017, doi: 10.1107/s2053273317095067

  • Ma, Y., et al. "Electron Crystallography for Determining the Handedness of a Chiral Zeolite Nanocrystal." Nature Materials, vol. 16, no. 7, pp. 755–59, 2017, doi: 10.1038/nmat4890

  • Gemmi, M., et al. "Structural Model of Cowlesite by Fast Electron Diffraction Tomography." Acta Crystallographica Section A Foundations and Advances, vol. 73, pp. C999–C999, 2017, doi: 10.1107/s2053273317085758

  • Rozhdestvenskaya, I. V., et al. "The Structure of Denisovite, a Fibrous Nanocrystalline Polytypic Disordered ‘very Complex’ Silicate, Studied by a Synergistic Multi-Disciplinary Approach Employing Methods of Electron Crystallography and X-Ray Powder Diffraction." IUCrJ, vol. 4, no. 100, International Union of Crystallography, pp. 223–42, 2017, doi: 10.1107/S2052252517002585

  • Németh, P., et al. "A Nanocrystalline Monoclinic CaCO3 Precursor of Metastable Aragonite." Science Advances, vol. 4, no. 12, pp. 1–7, 2018, doi: 10.1126/sciadv.aau6178

  • Portolés-Gil, N., et al. "Crystalline Curcumin BioMOF Obtained by Precipitation in Supercritical CO2 and Structural Determination by Electron Diffraction Tomography." ACS Sustainable Chemistry and Engineering, vol. 6, no. 9, pp.12309–19, 2018, doi: 10.1021/acssuschemeng.8b02738

  • Rhauderwiek, T., et al. "Highly Stable and Porous Porphyrin-Based Zirconium and Hafnium Phosphonates-Electron Crystallography as an Important Tool for Structure Elucidation." Chemical Science, vol. 9, no. 24, pp. 5467–78, 2018, doi: 10.1039/c8sc01533c

  • H.Petersen, et al. "An average structure model of the intermediate phase between sodalite and cancrinite" Z. Kristallogr., 2018, doi: 10.1515/zkri-2018-2114

  • Mugnaioli, E. and Mauro Gemmi, et al. "Single-Crystal Analysis of Nanodomains by Electron Diffraction Tomography: Mineralogy at the Order-Disorder Borderline." Zeitschrift Fur Kristallographie – Crystalline Materials, vol. 233, no. 3–4, pp.163–78, 2018, doi: 10.1515/zkri-2017-2130

  • Bieseki, L., et al. "Synthesis and Structure Determination via Ultra-Fast Electron Diffraction of the New Microporous Zeolitic Germanosilicate ITQ-62." Chemical Communications, vol. 54, no. 17, pp. 2122–25, 2018, doi: 10.1039/c7cc09240g

  • Roqué, J., et al. "Structural Characterization and Ab-Initio Resolution of Natural Occurring Zaccariniite (RhNiAs) by Means of Precession Electron Diffraction." Microchemical Journal, vol. 148, no. December Elsevier, pp. 130–40, 2018, doi: 10.1016/j.microc.2019.04.071

  • B.Rondeau, et al. "Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompanying lazulite from Mt. Ibity, Madagascar: an example of structural characterization from dynamical refinement of precession electron diffraction data on submicrometre sample" Eur. J. Mineral. 31, 379–388, 2019, doi: 10.1127/ejm/2019/0031-2817

  • Lanza, A. E., et al. "Daliranite, PbHgAs 2 S 5: Determination of the Incommensurately Modulated Structure and Revision of the Chemical Formula." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, pp. 711–16, 2019, doi: 10.1107/S2052520619007340

  • Bodach, A., et al. "Electron Diffraction Tomography and X-Ray Powder Diffraction on Photoredox Catalyst PDI." CrystEngComm, vol. 21, no. 15, Royal Society of Chemistry,pp.2571–75, 2019, doi: 10.1039/C8CE02026D

  • Campanale, F., et al. "Evidence for Subsolidus Quartz-Coesite Transformation in Impact Ejecta from the Australasian Tektite Strewn Field." Geochimica et Cosmochimica Acta, vol. 264, The Author(s), pp. 105–17, 2019, doi: 10.1016/j.gca.2019.08.014

  • Benjamin Rondea, et al. "Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompanying lazulite from Mt. Ibity, Madagascar: an example of structural characterization from dynamical refinement of precession electron diffraction data on sub-micrometre sample", Eur. J. Mineral. 31, 379–388, 2019, doi: 10.1127/ejm/2019/0031-2817

  • S Plana-Ruiz, et al. "Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement", 2020, doi: https://www.sciencedirect.com/science/article/pii/S0304399119303663

  • Huang, Z., et al. "Can 3D Electron Diffraction Provide Accurate Atomic Structures of Metal-Organic Frameworks?" Faraday Discussions, pp. 0–14, 2020, doi: 10.1039/d0fd00015a

  • A.Mayoral, et al. "Direct atomic level imaging of Zeolites: Oxygen, Na in Na-LTA and Fe in Fe-MFI" Angew. Chem. Int. Ed. 10.1002/anie.202006122, 2020, doi: 10.1002/anie.202006122

  • B.Q.Lu, et al. "Introducing the crystalline phase of dicalcium phosphate monohydrate" NATURE COMMUNICATIONS | 11:1546, 2020, doi: 10.1038/s41467-020-15333-6

  • Y.Krusiak, et al. "New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy"IUCrJ . 7, 522–534, 2020, doi: 10.1107/S2052252520003991

  • Tu Sun, et al. "Direct-Space Structure Determination of Covalent Organic Frameworks from 3D Electron Diffraction Data", Angew. Chem. Int. Ed.,, 2020, doi: 10.1002/anie.202009922

  • Donghui Jo, et al. "PST-24: A Zeolite with Varying Intracrystalline Channel Dimensionality’, Angewandte Chemie International Edition,, 2020, doi: 10.1002/anie.202007804

  • Isabella Pignatelli, et al. "The effect of the starting mineralogical mixture on the nature of Fe-serpentines obtained during hydrothermal synthesis at 90°C", Clays and Clay Minerals 23 Sept, 2020, doi: 10.1007/s42860-020-00080-y

  • Zhehao Huang, et al. "Three-dimensional electron diffraction for porous crystalline materials: structural determination and beyond", The Royal Society of Chemistry, 2020, doi: 10.1039/d0sc05731b

  • Maxime Debost, et al. "Synthesis of Discrete CHA Zeolite Nanocrystals without Organic Templates for Selective CO2 Capture", Angew. Chem. Int. Ed. 59, 23491–23495, 2020, doi: 10.1002/anie.202009397

  • Jörg Fritz, et al. "Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments", American Mineralogist, Volume 105, pages 1704–1711, 05.00, 2020, doi: 10.2138/am-2020-7393

  • Jordi Rius, et al. "Structural study of decrespignyite-(Y), a complex yttrium are earth copper carbonate chloride, by three-dimensional electron and synchrotron powder diffraction", Eur. J. Mineral., 32, 545–555,, 2020, doi: 10.5194/ejm-32-545-2020

  • Fahui Xiong, et al. "Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for super-reduced mantle-derived fluids?", Eur. J. Mineral., 32, 557–574,, 2020, doi: 10.5194/ejm-32-557-2020

  • Enrico Mugnaioli, et al. "The structure of kaliophilite KAlSiO4, a long-lasting crystallographic problem", IUCrJ . 7, 1070–108, 2020, doi: 10.1107/S2052252520012270

  • Zhehao Huang, et al. "Can 3D electron diffraction provide accurate atomic structures of metal – organic frameworks?", The Royal Society of Chemistry, 2020, doi: 10.1039/d0fd00015a

  • Sven Hovmoller, et al. "Twinning and intertwined microcrystals in an intriguing, yet elusive, mineral", IUCrJ . 7, 951–952, 2020, doi: 10.1107/S2052252520014293

  • Enrico Mugnaioli, et al. "Electron Diffraction on Flash-Frozen Cowlesite Reveals the Structure of the First Two-Dimensional Natural Zeolite", ACS Cent. Sci. 6, 1578-158, 2020, doi: 10.1021/acscentsci.9b01100

  • Elina Kapaca, et al. A journey towards complete structure determination of zeolites by electron crystallography methods", Doctoral Thesis in Inorganic Chemistry, Stockholm, 2020, doi:

  • Stefano Toso, et al. "Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures", J. Am. Chem. Soc. 142, 10198_10211, 2020, doi: 10.1021/jacs.0c03577

  • Gennaro Ventruti, et al. "High_temperature study of basic ferric sulfate, FeOHSO4", Physics and Chemistry of Minerals 47:43, 2020, doi: 10.1007/s00269-020-01113-7

  • Rohit Kumar Dev and Parashuram Mishra, et al. "Synthesis and ab initio Determination of Bi1.25 V0.123 Ca 0.245 N1.24 O8 cubic structure via powder X-ray diffraction data", World Journal of Advanced Research and Reviews, 07(03), 142–154, 2020, doi: 10.30574/wjarr.2020.7.3.0333

  • Zhehao Huang, et al. "3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic Frameworks", Coordination Chemistry Reviews 427 213583, 2021, doi: 10.1016/j.ccr.2020.213583

  • Gwladys Steciuk, et al. "Hydrogen disorder in kaatialaite Fe[AsO2(OH)2]5H2O from Ja´chymov, Czech Republic: determination from low-temperature 3D electron diffraction", IUCrJ 8, 2021, doi: 10.1107/S2052252520015626

ORGANIC-PHARMACEUTICALS

  • Schmidt, M. U., et al. "Electron Diffraction, X-Ray Powder Diffraction and Pair-Distribution- Function Analyses to Determine the Crystal Structures of Pigment Yellow 213, C23H21N5O9." Acta Crystallographica Section B: Structural Science, vol. 65, no. 2, pp. 189–99,, 2009, doi: 10.1107/S0108768109003759

  • Gorelik, T., et al. "Using Electron Diffraction to Solve the Crystal Structure of a Laked Azo Pigment." Crystal Growth and Design, vol. 9, no. 9, pp. 3898–903, 2009, doi: 10.1021/cg801099r

  • Gorelik, T., et al. "H-Bonding Schemes of Di-and Tri-p-Benzamides Assessed by a Combination of Electron Diffraction, X-Ray Powder Diffraction and Solid-State NMR." CrystEngComm, vol. 12, no. 6, pp. 1824–32, 2010, doi: 10.1039/b920569a

  • Kolb, U., et al. "Structural Characterization of Organics Using Manual and Automated Electron Diffraction." Polymer Reviews, vol. 50, no. 3, pp. 385–409, 2010, doi: 10.1080/15583724.2010.494238

  • Gorelik, T. E., et al. "Ab-Initio Crystal Structure Analysis and Refinement Approaches of Oligo p-Benzamides Based on Electron Diffraction Data." Acta Crystallographica Section B: Structural Science, vol. 68, no. 2, International Union of Crystallography, pp. 171–81, 2012, doi: 10.1107/S0108768112003138

  • Gorelik, T. E., et al. "Detecting Crystalline Nonequilibrium Phases on the Nanometer Scale." Crystal Growth and Design, vol. 12, no. 6, pp. 3239–42, 2012, doi: 10.1021/cg300377j

  • Förster, C., et al. "Crystalline Non-Equilibrium Phase of a Cobalt(II) Complex with Tridentate Ligands." European Journal of Inorganic Chemistry, vol. no. 6, pp.920–24, 2015, doi: 10.1002/ejic.201403200

  • Van Genderen, E., et al. "Ab Initio Structure Determination of Nanocrystals of Organic Pharmaceutical Compounds by Electron Diffraction at Room Temperature Using a Timepix Quantum Area Direct Electron Detector." Acta Crystallographica Section A: Foundations and Advances, vol. 72, International Union of Crystallography, pp.236–42, 2016, doi: 10.1107/S2053273315022500

  • Gorelik, T. E., et al. "Crystal Structure of Disordered Nanocrystalline _II-Quinacridone Determined by Electron Diffraction." CrystEngComm, vol. 18, no. 4, Royal Society of Chemistry, pp. 529–35, 2016, doi: 10.1039/c5ce01855b

  • Wilke, M., et al. "The Crystallisation of Copper(II) Phenylphosphonates." Dalton Transactions, vol. 45, no. 43, Royal Society of Chemistry, pp. 17453–63, 2016, doi: 10.1039/c6dt02904c

  • Wang, Y., et al. "Elucidation of the Elusive Structure and Formula of the Active Pharmaceutical Ingredient Bismuth Subgallate by Continuous Rotation Electron Diffraction." Chemical Communications, vol. 53, no. 52, pp. 7018–21, 2017, doi: 10.1039/c7cc03180g

  • Das, P. P., et al. "Crystal Structures of Two Important Pharmaceuticals Solved by 3D Precession Electron Diffraction Tomography." Organic Process Research and Development, vol. 22, no. 10, American Chemical Society, pp. 1365–72, 2018, doi: 10.1021/acs.oprd.8b00149

  • Gruene, T., et al. "Rapid Structure Determination of Microcrystalline Molecular Compounds Using Electron Diffraction." Angewandte Chemie – International Edition, vol. 57, no. 50, pp. 16313–17, 2018, doi: 10.1002/anie.201811318

  • Jones, C. G., et al. "The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination." ACS Central Science, vol. 4, no. 11, pp. 1587–92, 2018, doi: 10.1021/acscentsci.8b00760

  • Kunde, T., et al. "Microcrystal Electron Diffraction (MicroED) for Small-Molecule Structure Determination." Angewandte Chemie – International Edition, vol. 58, no. 3,pp.666–68, 2019, doi: 10.1002/anie.201813215

  • Clabbers, M. T. B., et al. "Reducing Dynamical Electron Scattering Reveals Hydrogen Atoms." Acta Crystallographica Section A: Foundations and Advances, vol. 75, no. 1, International Union of Crystallography, pp. 82–93, 2019, doi: 10.1107/S2053273318013918

  • Jones, C. G., et al. "Characterization of Reactive Organometallic Species via MicroED." ACS Central Science, vol. 5, no. 9, pp. 1507–13, 2019, doi: 10.1021/acscentsci.9b00403

  • Andrusenko, I., et al. "The Crystal Structure of Orthocetamol Solved by 3D Electron Diffraction." Angewandte Chemie – International Edition, vol. 58, no. 32, pp.10919–22, 2019, doi: 10.1002/anie.201904564

  • Guzmán-Afonso, C., et al. "Understanding Hydrogen-Bonding Structures of Molecular Crystals via Electron and NMR Nanocrystallography." Nature Communications, vol. 10, no. 1, Springer US, pp. 1–10, 2019, doi: 10.1038/s41467-019-11469-2

  • Broadhurst, E. T., et al. "Polymorph Evolution during Crystal Growth Studied by 3D Electron Diffraction." IUCrJ, vol. 7, pp. 5–9, 2020, doi: 10.1107/S2052252519016105

  • Gemmi, M., et al. "A New Method Based on Electron Diffraction for Detecting Nanoparticles in Injectable Medicines." Journal of Pharmaceutical Sciences, vol. 109, no. 1, Elsevier Ltd, pp. 891–99, 2020, doi: 10.1016/j.xphs.2019.07.008

  • Iryna Andrusenko, et al. "A new olanzapine cocrystal obtained from volatile deep eutectic solvents and determined by 3D electron diffraction", Acta Cryst. . B76, 1036–1044, 2020, doi: 10.1107/S2052520620012779

  • Victoria Hamilton, et al. "Racemic Conglomerate Formation via Crystallization of Metaxalone from Volatile Deep Eutectic Solvents", Cryst. Growth Des. 20, 4731_4739, 2020, doi: 10.1021/acs.cgd.0c00497

  • Emma Danelius, et al. "MicroED in natural product and small molecule research", The Royal Society of Chemistry, 2020, doi: 10.1039/d0np00035c