ASTAR IN SITU STRAIN LITERATURE :
Veron, M.,, et al. "TEM Deformation Maps_: Microstructure & Mechanical Behaviour." TMS, 2012, doi: https://hal.archives-ouvertes.fr/hal-00818007
Kobler, A.,, et al. "Combination of in Situ Straining and ACOM TEM: A Novel Method for Analysis of Plastic Deformation of Nanocrystalline Metals." Ultramicroscopy, vol. 128, pp. 68–81, 2013, doi: 10.1016/j.ultramic.2012.12.019
Kobler, A.,, et al. "Deformation-Induced Grain Growth and Twinning in Nanocrystalline Palladium Thin Films." Beilstein Journal of Nanotechnology, vol. 4, no. 1, pp.554–66, 2013, doi: 10.3762/bjnano.4.64
Mompiou, F.,, et al. "Inter- and Intragranular Plasticity Mechanisms in Ultrafine-Grained Al Thin Films: An in Situ TEM Study." Acta Materialia, vol. 61, no. 1, pp.205–16, 2013, doi: 10.1016/j.actamat.2012.09.051
C Kübel, et al. "Analysis of Deformation Induced Grain Growth and Texture Development in Electrodeposited Nickel-a Quantitative Comparison between ACOM-STEM and in-situ X …", 2013, doi: doi:10.1017/S1431927613005515
A Kobler, et al. "Combination of in situ straining and ACOM TEM: A novel method for analysis of plastic deformation of nanocrystalline metals", 2013, doi: https://doi.org/10.1016/j.ultramic.2012.12.019
A Kobler, et al. "Deformation-induced grain growth and twinning in nanocrystalline palladium thin films", 2013, doi: https://www.beilstein-journals.org/bjnano/articles/2190-4286-4-64
Kobler, A.,, et al. "In Situ Straining Analysis with ACOM-TEM." Imaging & Microscopy, no. 1, pp. 40–43, 2014, doi: http://www.imaging-git.com/science/electron-and-ion-microscopy/situ-straining-analysis-acom-tem
Lohmiller, J.,, et al. "Untangling Dislocation and Grain Boundary Mediated Plasticity in Nanocrystalline Nickel." Acta Materialia, vol. 65, pp. 295–307, 2014, doi: 10.1016/j.actamat.2013.10.071
Haddad, M.,, et al. "In-Situ Tensile Test of High Strength Nanocrystalline Bainitic Steel." Materials Science and Engineering A, vol. 620, Elsevier, pp. 30–35, 2015, doi: 10.1016/j.msea.2014.09.088
Ruffing, C.,, et al. "Fatigue Behavior of Ultrafine-Grained Medium Carbon Steel with Different Carbide Morphologies Processed by High Pressure Torsion." Metals, vol. 5, no. 2, pp. 891–909, 2015, doi: 10.3390/met5020891
Kobler, A.,, et al. "Nanotwinned Silver Nanowires: Structure and Mechanical Properties." Acta Materialia, vol. 92, pp. 299–308, 2015, doi: 10.1016/j.actamat.2015.02.041
C Ruffing, et al. "Fatigue behavior of ultrafine-grained medium carbon steel with different carbide morphologies processed by high pressure torsion", 2015, doi: https://www.mdpi.com/100858
M Haddad, et al. "In-situ tensile test of high strength nanocrystalline bainitic steel", 2015, doi: https://www.sciencedirect.com/science/article/pii/S0921509314012040
D Tingaud, et al. "Investigation of deformation micro-mechanisms in nickel consolidated from a bimodal powder by spark plasma sintering", 2015, doi: https://www.sciencedirect.com/science/article/pii/S1044580314003659
Kobler, A.,, et al. "ACOM-TEM and Its Application for the Investigation of Deformation Pathways in Nanocrystalline Pd and AuPd." European Microscopy Congress : Proceedings, vol. 225, no. 1, pp. 191–92, 2016, doi: 10.1002/9783527808465.emc2016.8770
Kobler, A.,, et al. "In Situ Observation of Deformation Processes in Nanocrystalline Face-Centered Cubic Metals." Beilstein Journal of Nanotechnology, vol. 7, no. 1, pp. 572–80, 2016, doi: 10.3762/bjnano.7.50
Bufford, D. C.,, et al. "High Cycle Fatigue in the Transmission Electron Microscope." Nano Letters, vol. 16, no. 8, pp. 4946–53, 2016, doi: 10.1021/acs.nanolett.6b01560
A Kobler, et al. "ACOM‐TEM and its application for the investigation of deformation pathways in nanocrystalline Pd and AuPd", 2016, doi: https://doi.org/10.1002/9783527808465.EMC2016.8770
DC Bufford, et al. "Combining Orientation Mapping and In Situ TEM to Investigate High-Cycle Fatigue and Failure", 2016, doi: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/combining-orientation-mapping-and-in-situ-tem-to-investigate-highcycle-fatigue-and-failure/A0A3EA47F6E24F934DE61EC0FD6A60E7
Rottmann, P. F.,, et al. "Experimental Quantification of Mechanically Induced Boundary Migration in Nanocrystalline Copper Films." Acta Materialia, vol. 140, pp. 46–55, 2017, doi: 10.1016/j.actamat.2017.08.022
Izadi, E.,, et al. "Grain Rotations in Ultrafine-Grained Aluminum Films Studied Using in Situ TEM Straining with Automated Crystal Orientation Mapping." Materials and Design, vol. 113, Elsevier Ltd, pp. 186–94, 2017, doi: 10.1016/j.matdes.2016.10.015
Aubin, J.,, et al. "Growth and Structural Properties of Step-Graded, High Sn Content GeSn Layers on Ge." Semiconductor Science and Technology, vol. 32, no. 9,, 2017, doi: 10.1088/1361-6641/aa8084
Izadi, E.,, et al. "In Situ TEM Investigation of the Deformation Mechanisms and Microstructural Changes in Ultrafine-Grained Non-Textured Aluminum Film Using Automated Crystal Orientation Mapping ." Microscopy and Microanalysis, vol. 23, no. S1, pp. 768–69, 2017, doi: 10.1017/s1431927617004500
Barr, C. M.,, et al. "Investigation of Grain Growth and Deformation in Nanocrystalline Metals Through In-Situ TEM Mechanical Testing and Crystallographic Orientation Mapping." Microscopy and Microanalysis, vol. 23, no. S1, pp. 740–41, 2017, doi: 10.1017/s1431927617004366
H Ghassemi-Armaki, et al. "Cyclic compression response of micropillars extracted from textured nanocrystalline NiTi thin-walled tubes", 2017, doi: DOI:10.1016/j.actamat.2017.06.043
PF Rottmann, et al. "Experimental quantification of mechanically induced boundary migration in nanocrystalline copper films", 2017, doi: DOI:10.1016/j.actamat.2017.08.022
E Izadi, et al. "Grain rotations in ultrafine-grained aluminum films studied using in situ TEM straining with automated crystal orientation mapping", 2017, doi: https://www.sciencedirect.com/science/article/pii/S0264127516313065
TA Furnish, et al. "The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe", 2017, doi: https://link.springer.com/article/10.1007/s10853-016-0437-z
Kilmametov, A. R.,, et al. "The ___ and ___ Phase Transformations in Ti–Fe Alloys under High-Pressure Torsion." Acta Materialia, vol. 144, no. November, pp. 337–51, 2018, doi: 10.1016/j.actamat.2017.10.051
Wang, J. J.,, et al. "Revealing the Deformation Mechanisms of Nanograins in Gradient Nanostructured Cu and CuAl Alloys under Tension." Acta Materialia, vol. 180, pp.231–42, 2019, doi: 10.1016/j.actamat.2019.09.021
N Armstrong, et al. "Bayesian analysis of in-situ high-resolution X-ray diffraction synchrotron experiments of Ti-6Al-4V specimens undergoing tensile loading", 2019, doi: https://doi.org/10.1115/GT2019-91230
MA Khan, et al. "Adiabatic shear band localization in an Al–Zn–Mg–Cu alloy under high strain rate compression", 2020, doi: https://doi.org/10.1016/j.jmrt.2020.02.024
N Armstrong, et al. "Bayesian analysis reveals the impact of load partitioning on microstructural evolution in Ti-6Al-4V during in-situ tensile loading", 2021, doi: DOI:10.1016/j.mtla.2020.100993
JX Li, et al. "Tensile strain induced texture evolution in a Ni–Mo alloy with extremely fine nanotwinned columnar grains", 2021, doi: https://www.sciencedirect.com/science/article/pii/S0921509321003774
S. He, et al. "High Reversible Strain in Nanotwinned Metals", 2021, doi: https://pubs.acs.org/doi/10.1021/acsami.1c10949
Li, et al. "Direct observation of grain boundary formation in bcc iron through TEM in situ compression test", 2022, doi: