ASTAR SEMICONDUCTORS LITERATURE

    • Ganesh, K.J.,, et al. "Automated Local Texture and Stress Analysis in Cu Interconnects Using D- STEM and Precession Microscopy." Microscopy and Microanalysis, vol. 16,no.2, 2010, doi: 10.1017/S1431927610061933

    • Häusler, I.,, et al. "Crystallite Phase and Orientation Mapping of MnAs in GaAs on the Basis of Automatically Analyzed Precession Electron Diffraction Spot Patterns." Proc. IMC17, pp. 2–3, 2010, doi: 10.1109/NANO.2011.6144300

    • Ganesh, K.J.,, et al. "D-STEM: A Parallel Electron Diffraction Technique Applied to Nanomaterials." Microscopy and Microanalysis, vol. 16, no. 5, pp. 614–21, 2010, doi: 10.1017/S1431927610000334

    • Brandstetter, S.,, et al. "Pattern Size Dependence of Grain Growth in Cu Interconnects." Scripta Materialia, vol. 63, no. 10, pp. 965–68, 2010, doi: 10.1016/j.scriptamat.2010.07.017

    • S Brandstetter, et al. "Pattern size dependence of grain growth in Cu interconnects", 2010, doi: https://www.sciencedirect.com/science/article/pii/S1359646210004902

    • Clement, L.,, et al. "Microscopy Needs for next Generation Devices Characterization in the Semiconductor Industry." Journal of Physics: Conference Series, vol. 326, no. 1, 2011, doi: 10.1088/1742-6596/326/1/012008

    • Ganesh, K.J.,, et al. "Rapid and Automated Grain Orientation and Grain Boundary Analysis in Nanoscale Copper Interconnects." International Reliability Physics Symposium, vol. 5, no. C, p. 3, 2011, doi: 10.1109/IRPS.2011.5784524

    • Cao, L.,, et al. "Analysis of Grain Structure by Precession Electron Diffraction and Effects on Electromigration Reliability of Cu Interconnects." IEEE International Interconnect Technology Conference, IITC pp. 12–14, 2012, doi: 10.1109/IITC.2012.6251667

    • Estradé, S.,, et al. "Assessment of Misorientation in Metallic and Semiconducting Nanowires Using Precession Electron Diffraction." Micron, vol. 43, no. 8, Elsevier Ltd,pp.910–15, 2012, doi: 10.1016/j.micron.2012.03.003

    • Yoo, S. J.,, et al. "Characterization of Crystallographic Properties of GaN Thin Film Using Automated Crystal Orientation Mapping with TEM." Metals and Materials International, vol. 18, no. 6, Dec. pp. 997–1001, 2012, doi: 10.1007/s12540-012-6011-6

    • Häusler, I.,, et al. "Crystallite Phase and Orientation Determinations of ( Mn , Ga ) As / GaAs- Crystallites Using Analyzed ( Precession ) Electron Diffraction Patterns.", 2012, doi:

    • Ganesh, K.J.,, et al. "Effect of Downscaling Nano-Copper Interconnects on the Microstructure Revealed by High Resolution TEM-Orientation-Mapping." IEEE International Interconnect Technology Conference, vol. 18, IEEE, pp. 1–3, 2012, doi: 10.1109/IITC.2012.6251667.

    • CK Hu, et al. "Scaling and Microstructure Effects on Electromigration Reliability for Cu Interconnects", 2012, doi: https://books.google.com/books?hl=en&lr=&id=Njx9PFHdxjQC&oi=fnd&pg=PA291&ots=CN6LV-GBTZ&sig=HKnH1oyOjeQuptFenQF_JeOIgh4

    • Cao, L.,, et al. "Grain Structure Analysis and Effect on Electromigration Reliability in Nanoscale Cu Interconnects." Applied Physics Letters, vol. 102, no. 13, pp. 1–5, 2013, doi: 10.1063/1.4799484

    • Darbal, A. D.,, et al. "Grain Boundary Character Distribution of Nanocrystalline Cu Thin Films Using Stereological Analysis of Transmission Electron Microscope Orientation Maps." Microscopy and Microanalysis, vol. 19, no. 1, pp. 111–19, 2013, doi: 10.1017/S1431927612014055

    • Cao, L.,, et al. "Grain Structure Analysis and Effect on Electromigration Reliability in Nanoscale Cu Interconnects." Applied Physics Letters, vol. 102, no. 13, 2013, doi: 10.1063/1.4799484

    • Martinez, M.,, et al. "Mechanisms of Copper Direct Bonding Observed by In-Situ and Quantitative Transmission Electron Microscopy." Thin Solid Films, vol. 530, Elsevier B.V., pp. 96–99, 2013, doi: 10.1016/j.tsf.2012.02.056

    • Galand, R.,, et al. "Microstructural Void Environment Characterization by Electron Imaging in 45 Nm Technology Node to Link Electromigration and Copper Microstructure." Microelectronic Engineering, vol. 106, Elsevier B.V., pp. 168–71, 2013, doi: 10.1016/j.mee.2013.01.018

    • L Cao - 2014 - repositories.lib.utexas.edu, et al. "Effects of scaling on microstructure evolution of Cu nanolines and impact on electromigration reliability", 2014, doi: DOI:10.1063/1.4799484

    • Haas, B.,, et al. "Microstructural Characterization of Organic Heterostructures by (Transmission) Electron Microscopy." Crystal Growth and Design, vol. 14, no. 6, pp.3010–14, 2014, doi: 10.1021/cg5002896

    • Ruiz-Zepeda, F.,, et al. "Precession Electron Diffraction-Assisted Crystal Phase Mapping of Metastable c-GaN Films Grown on (001) GaAs." Microscopy Research and Technique, vol. 77, no. 12, pp. 980–85, 2014, doi: 10.1002/jemt.22424

    • Barmak, K.,, et al. "Surface and Grain Boundary Scattering in Nanometric Cu Thin Films: A Quantitative Analysis Including Twin Boundaries." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, no. 6, p. 061503, 2014, doi: 10.1116/1.4894453

    • Zhang, X.,, et al. "Co Liner Impact on Microstructure of Cu Interconnects." ECS Journal of Solid State Science and Technology, vol. 4, no. 1, pp. N3177–79, 2015, doi: 10.1149/2.0141501jss

    • Valery, A.,, et al. "Dealing With Multiple Grains in TEM Lamellae Thickness for Microstructure Analysis Using Scanning Precession Electron Diffraction." Microscopy and Microanalysis, vol. 21, no. S3, pp. 1243–44, 2015, doi: 10.1017/s143192761500700x

    • Hrkac, V.,, et al. "Structural Study of Growth, Orientation and Defects Characteristics in the Functional Microelectromechanical System Material Aluminium Nitride." Journal of Applied Physics, vol. 117, no. 1, 2015, doi: 10.1063/1.4905109

    • T.Dankwort, et al. "Martensite Adaption through Epitaxial Nano Transition Layers in TiNiCu Shape Memory Alloys" J. Appl. Cryst. .49, 2016, doi: 10.1107/S160057671600710X

    • A.Valery, et al. "ACOM-TEM: potentiel et limites de caractérisation de la microstructure des matériaux de la microélectronique PhD", 2017, doi:

    • A Valery - 2017 - theses.fr, et al. "Caractérisation de microtextures par la technique ACOM-TEM dans le cadre du développement des technologies avancées en microélectronique", 2017, doi: https://www.theses.fr/2017GREAI018

    • A Kobler, et al. "Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM", 2017, doi: https://www.sciencedirect.com/science/article/pii/S030439911630095X

    • R Ruffilli - 2017 - tel.archives-ouvertes.fr, et al. "Fatigue mechanisms in Al-based metallizations in power MOSFETs", 2017, doi: https://tel.archives-ouvertes.fr/tel-01933501/

    • I Häusler, et al. "Orientation relationships of Mn0.75Ga0.25As crystallites on and within GaAs determined by scanning nano beam electron diffraction", 2017, doi: https://onlinelibrary.wiley.com/doi/abs/10.1002/crat.201600261

    • Lee, S. Y.,, et al. "Transmission Orientation Imaging of Copper Thin Films on Polyimide Substrates Intended for Flexible Electronics." Scripta Materialia, vol. 138, Acta Materialia Inc., pp. 52–56, 2017, doi: 10.1016/j.scriptamat.2017.05.037

    • L Latu-Romain, et al. "About the control of semiconducting properties of chromia: investigation using photoelectrochemistry and orientation mapping in a TEM", 2018, doi: https://doi.org/10.1080/09603409.2017.1389113

    • R Ruffilli, et al. "Aluminum metallization and wire bonding aging in power MOSFET modules", 2018, doi: https://doi.org/10.1016/j.matpr.2018.03.056

    • M Agati, et al. "Chemical phase segregation during the crystallization of Ge-rich GeSbTe alloys", 2019, doi: https://pubs.rsc.org/en/content/articlehtml/2019/tc/c9tc02302j

    • Loïc Henry, et al. "Studying phase change memory devices by coupling scanning precession electron diffraction and energy dispersive X-ray analysis", Acta Materialia 201 72-78, 2020, doi: 10.1016/j.actamat.2020.09.033