ASTAR LITERATURE

ASTAR SEMICONDUCTORS

  • Ganesh, K.J.,, et al. "Automated Local Texture and Stress Analysis in Cu Interconnects Using D- STEM and Precession Microscopy." Microscopy and Microanalysis, vol. 16,no.2, 2010, doi: 10.1017/S1431927610061933

  • Häusler, I.,, et al. "Crystallite Phase and Orientation Mapping of MnAs in GaAs on the Basis of Automatically Analyzed Precession Electron Diffraction Spot Patterns." Proc. IMC17, pp. 2–3, 2010, doi: 10.1109/NANO.2011.6144300

  • Ganesh, K.J.,, et al. "D-STEM: A Parallel Electron Diffraction Technique Applied to Nanomaterials." Microscopy and Microanalysis, vol. 16, no. 5, pp. 614–21, 2010, doi: 10.1017/S1431927610000334

  • Brandstetter, S.,, et al. "Pattern Size Dependence of Grain Growth in Cu Interconnects." Scripta Materialia, vol. 63, no. 10, pp. 965–68, 2010, doi: 10.1016/j.scriptamat.2010.07.017

  • S Brandstetter, et al. "Pattern size dependence of grain growth in Cu interconnects", 2010, doi: https://www.sciencedirect.com/science/article/pii/S1359646210004902

  • Clement, L.,, et al. "Microscopy Needs for next Generation Devices Characterization in the Semiconductor Industry." Journal of Physics: Conference Series, vol. 326, no. 1, 2011, doi: 10.1088/1742-6596/326/1/012008

  • Ganesh, K.J.,, et al. "Rapid and Automated Grain Orientation and Grain Boundary Analysis in Nanoscale Copper Interconnects." International Reliability Physics Symposium, vol. 5, no. C, p. 3, 2011, doi: 10.1109/IRPS.2011.5784524

  • Cao, L.,, et al. "Analysis of Grain Structure by Precession Electron Diffraction and Effects on Electromigration Reliability of Cu Interconnects." IEEE International Interconnect Technology Conference, IITC pp. 12–14, 2012, doi: 10.1109/IITC.2012.6251667

  • Estradé, S.,, et al. "Assessment of Misorientation in Metallic and Semiconducting Nanowires Using Precession Electron Diffraction." Micron, vol. 43, no. 8, Elsevier Ltd,pp.910–15, 2012, doi: 10.1016/j.micron.2012.03.003

  • Yoo, S. J.,, et al. "Characterization of Crystallographic Properties of GaN Thin Film Using Automated Crystal Orientation Mapping with TEM." Metals and Materials International, vol. 18, no. 6, Dec. pp. 997–1001, 2012, doi: 10.1007/s12540-012-6011-6

  • Häusler, I.,, et al. "Crystallite Phase and Orientation Determinations of ( Mn , Ga ) As / GaAs- Crystallites Using Analyzed ( Precession ) Electron Diffraction Patterns.", 2012, doi:

  • Ganesh, K.J.,, et al. "Effect of Downscaling Nano-Copper Interconnects on the Microstructure Revealed by High Resolution TEM-Orientation-Mapping." IEEE International Interconnect Technology Conference, vol. 18, IEEE, pp. 1–3, 2012, doi: 10.1109/IITC.2012.6251667.

  • CK Hu, et al. "Scaling and Microstructure Effects on Electromigration Reliability for Cu Interconnects", 2012, doi: https://books.google.com/books?hl=en&lr=&id=Njx9PFHdxjQC&oi=fnd&pg=PA291&ots=CN6LV-GBTZ&sig=HKnH1oyOjeQuptFenQF_JeOIgh4

  • Cao, L.,, et al. "Grain Structure Analysis and Effect on Electromigration Reliability in Nanoscale Cu Interconnects." Applied Physics Letters, vol. 102, no. 13, pp. 1–5, 2013, doi: 10.1063/1.4799484

  • Darbal, A. D.,, et al. "Grain Boundary Character Distribution of Nanocrystalline Cu Thin Films Using Stereological Analysis of Transmission Electron Microscope Orientation Maps." Microscopy and Microanalysis, vol. 19, no. 1, pp. 111–19, 2013, doi: 10.1017/S1431927612014055

  • Cao, L.,, et al. "Grain Structure Analysis and Effect on Electromigration Reliability in Nanoscale Cu Interconnects." Applied Physics Letters, vol. 102, no. 13, 2013, doi: 10.1063/1.4799484

  • Martinez, M.,, et al. "Mechanisms of Copper Direct Bonding Observed by In-Situ and Quantitative Transmission Electron Microscopy." Thin Solid Films, vol. 530, Elsevier B.V., pp. 96–99, 2013, doi: 10.1016/j.tsf.2012.02.056

  • Galand, R.,, et al. "Microstructural Void Environment Characterization by Electron Imaging in 45 Nm Technology Node to Link Electromigration and Copper Microstructure." Microelectronic Engineering, vol. 106, Elsevier B.V., pp. 168–71, 2013, doi: 10.1016/j.mee.2013.01.018

  • L Cao - 2014 - repositories.lib.utexas.edu, et al. "Effects of scaling on microstructure evolution of Cu nanolines and impact on electromigration reliability", 2014, doi: DOI:10.1063/1.4799484

  • Haas, B.,, et al. "Microstructural Characterization of Organic Heterostructures by (Transmission) Electron Microscopy." Crystal Growth and Design, vol. 14, no. 6, pp.3010–14, 2014, doi: 10.1021/cg5002896

  • Ruiz-Zepeda, F.,, et al. "Precession Electron Diffraction-Assisted Crystal Phase Mapping of Metastable c-GaN Films Grown on (001) GaAs." Microscopy Research and Technique, vol. 77, no. 12, pp. 980–85, 2014, doi: 10.1002/jemt.22424

  • Barmak, K.,, et al. "Surface and Grain Boundary Scattering in Nanometric Cu Thin Films: A Quantitative Analysis Including Twin Boundaries." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, no. 6, p. 061503, 2014, doi: 10.1116/1.4894453

  • Zhang, X.,, et al. "Co Liner Impact on Microstructure of Cu Interconnects." ECS Journal of Solid State Science and Technology, vol. 4, no. 1, pp. N3177–79, 2015, doi: 10.1149/2.0141501jss

  • Valery, A.,, et al. "Dealing With Multiple Grains in TEM Lamellae Thickness for Microstructure Analysis Using Scanning Precession Electron Diffraction." Microscopy and Microanalysis, vol. 21, no. S3, pp. 1243–44, 2015, doi: 10.1017/s143192761500700x

  • Hrkac, V.,, et al. "Structural Study of Growth, Orientation and Defects Characteristics in the Functional Microelectromechanical System Material Aluminium Nitride." Journal of Applied Physics, vol. 117, no. 1, 2015, doi: 10.1063/1.4905109

  • T.Dankwort, et al. "Martensite Adaption through Epitaxial Nano Transition Layers in TiNiCu Shape Memory Alloys" J. Appl. Cryst. .49, 2016, doi: 10.1107/S160057671600710X

  • A.Valery, et al. "ACOM-TEM: potentiel et limites de caractérisation de la microstructure des matériaux de la microélectronique PhD", 2017, doi:

  • A Valery - 2017 - theses.fr, et al. "Caractérisation de microtextures par la technique ACOM-TEM dans le cadre du développement des technologies avancées en microélectronique", 2017, doi: https://www.theses.fr/2017GREAI018

  • A Kobler, et al. "Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM", 2017, doi: https://www.sciencedirect.com/science/article/pii/S030439911630095X

  • R Ruffilli - 2017 - tel.archives-ouvertes.fr, et al. "Fatigue mechanisms in Al-based metallizations in power MOSFETs", 2017, doi: https://tel.archives-ouvertes.fr/tel-01933501/

  • I Häusler, et al. "Orientation relationships of Mn0.75Ga0.25As crystallites on and within GaAs determined by scanning nano beam electron diffraction", 2017, doi: https://onlinelibrary.wiley.com/doi/abs/10.1002/crat.201600261

  • Lee, S. Y.,, et al. "Transmission Orientation Imaging of Copper Thin Films on Polyimide Substrates Intended for Flexible Electronics." Scripta Materialia, vol. 138, Acta Materialia Inc., pp. 52–56, 2017, doi: 10.1016/j.scriptamat.2017.05.037

  • L Latu-Romain, et al. "About the control of semiconducting properties of chromia: investigation using photoelectrochemistry and orientation mapping in a TEM", 2018, doi: https://doi.org/10.1080/09603409.2017.1389113

  • R Ruffilli, et al. "Aluminum metallization and wire bonding aging in power MOSFET modules", 2018, doi: https://doi.org/10.1016/j.matpr.2018.03.056

  • M Agati, et al. "Chemical phase segregation during the crystallization of Ge-rich GeSbTe alloys", 2019, doi: https://pubs.rsc.org/en/content/articlehtml/2019/tc/c9tc02302j

  • Loïc Henry, et al. "Studying phase change memory devices by coupling scanning precession electron diffraction and energy dispersive X-ray analysis", Acta Materialia 201 72-78, 2020, doi: 10.1016/j.actamat.2020.09.033

ASTAR & 3D DIFFRACTION TOMOGRAPHY

  • Baraldi, A.,, et al. "Eu Incorporation into Sol-Gel Silica for Photonic Applications: Spectroscopic and TEM Evidences of _-Quartz and Eu Pyrosilicate Nanocrystal Growth." Journal of Physical Chemistry C, vol. 117, no. 50, pp. 26831–48, 2013, doi: 10.1021/jp4101174

  • JR Rosell, et al. "Au crystal growth on natural occurring Au—Ag aggregate elucidated by means of precession electron diffraction (PED)", 2018, doi: DOI:10.1016/j.jcrysgro.2017.11.031

  • Singh, V.,, et al. "Microstructural Characterization by Automated Crystal Orientation and Phase Mapping by Precession Electron Diffraction in TEM: Application to Hot Deformation of a Î3-TiAl-Based Alloy." Microscopy and Microanalysis, pp. 1–9, 2019, doi: 10.1017/S1431927619000394

  • Roqué, J.,, et al. "Structural Characterization and Ab-Initio Resolution of Natural Occurring Zaccariniite (RhNiAs) by Means of Precession Electron Diffraction." Microchemical Journal, vol. 148, no. December Elsevier, pp. 130–40, 2019, doi: 10.1016/j.microc.2019.04.071

  • Sarkar, R.,, et al. "Structure and Orientation of an Intermetallic Phase in a W-Ni-Co Alloy." Philosophical Magazine, vol. 99, no. 10, Taylor & Francis, pp. 1240–58, 2019, doi: 10.1080/14786435.2019.1579376

ASTAR & HREM

  • Rauch, E. F.,, et al. "High Throughput Automated Crystal Orientation and Phase Mapping of Nanoparticles from Hrem – Tem Images." Microscopy and Microanalysis, vol. 15, no. SUPPL. 2, pp. 756–57, 2009, doi: 10.1017/S1431927609099607

  • Soulas, R.,, et al. "TEM Investigations of the Oxide Layers Formed on a 316L Alloy in Simulated PWR Environment." Journal of Materials Science, vol. 48, no. 7, pp.2861–71, 2013, doi: 10.1007/s10853-012-6975-0

ASTAR 4D SPED

  • Valery, A.,, et al. "Dealing With Multiple Grains in TEM Lamellae Thickness for Microstructure Analysis Using Scanning Precession Electron Diffraction." Microscopy and Microanalysis, vol. 21, no. S3, pp. 1243–44, 2015, doi: 10.1017/s143192761500700x

  • Eggeman, A. S.,, et al. "Scanning Precession Electron Tomography for Three-Dimensional Nanoscale Orientation Imaging and Crystallographic Analysis." Nature Communications, vol. 6, Nature Publishing Group, pp. 1–7, 2015, doi: 10.1038/ncomms8267

  • DN Johnstone, et al. "Crystallographic mapping in engineering alloys by scanning precession electron diffraction", 2016, doi: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527808465.EMC2016.6041

  • Sunde, J. K.,, et al. "Phase Mapping of 2xxx-Series Aluminium Alloys by Scanning Precession Electron Diffraction.", 2016, doi: 10.1002/9783527808465.EMC2016.5248

  • Ortega, E.,, et al. "Structural Damage Reduction in Protected Gold Clusters by Electron Diffraction Methods." Advanced Structural and Chemical Imaging, vol. 2, no. 1, Springer International Publishing, 2016, doi: 10.1186/s40679-016-0026-x

  • Bruma, A.,, et al. "Structure Determination of Superatom Metallic Clusters Using Rapid Scanning Electron Diffraction." Journal of Physical Chemistry C, vol. 120, no. 3, pp.1902–08, 2016, doi: 10.1021/acs.jpcc.5b09524

  • Kobler, A.,, et al. "Challenges in Quantitative Crystallographic Characterization of 3D Thin Films by ACOM-TEM." Ultramicroscopy, vol. 173, Elsevier, pp. 84–94, 2016, doi: 10.1016/j.ultramic.2016.07.007

  • Valery, A.,, et al. "Retrieving Overlapping Crystals Information from TEM Nano-Beam Electron Diffraction Patterns." Journal of Microscopy, vol. 268, no. 2, pp. 208–18, 2017, doi: 10.1111/jmi.12599

  • Johnstone, D. N.,, et al. "The Microstructure of Pharmaceutical Materials Revealed by Scanning Electron Diffraction." Microscopy and Microanalysis, vol. 23, no. S1, pp.1192–93, 2017, doi: 10.1017/s1431927617006626

  • HW Ånes, et al. "Crystal phase mapping by scanning precession electron diffraction and machine learning decomposition", 2018, doi: DOI: https://doi.org/10.1017/S1431927618003422

  • Kobler, A.,, et al. "Towards 3D Crystal Orientation Reconstruction Using Automated Crystal Orientation Mapping Transmission Electron Microscopy (ACOM-TEM)." Beilstein Journal of Nanotechnology, vol. 9, no. 1, pp. 602–07, 2018, doi: 10.3762/bjnano.9.56

  • HW Ånes, et al. "In-situ observations of dislocation recovery and low angle boundary formation in deformed aluminium", 2019, doi: https://iopscience.iop.org/article/10.1088/1742-6596/1270/1/012010/meta

  • Nord, M.,, et al. "Fast Pixelated Detectors in Scanning Transmission Electron Microscopy. Part I: Data Acquisition, Live Processing and Storage", 2019, doi: http://arxiv.org/abs/1911.11560

  • Rauch, E. F.,, et al. "Methods for Orientation and Phase Identification of Nano-Sized Embedded Secondary Phase Particles by 4D Scanning Precession Electron Diffraction." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, pp. 505–11, 2019, doi: 10.1107/S2052520619007583

  • Christiansen, E.,, et al. "Nano-Scale Characterisation of Sheared _" Precipitates in a Deformed Al-Mg-Si Alloy." Scientific Reports, vol. 9, no. 1, pp. 1–11, 2019, doi: 10.1038/s41598-019-53772-4

  • Rauch, E. F.,, et al. "Revealing Embedded Crystals through Their Diffracting Signals in Transmission Electron Microscopy." Microscopy and Microanalysis, vol. 25, no. S2,pp.1922–23, 2019, doi: 10.1017/s1431927619010341

  • Eggeman, A. S., et al. "Scanning Transmission Electron Diffraction Methods." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, International Union of Crystallography, pp. 475–84, 2019, doi: 10.1107/S2052520619006723

  • Martineau, B. H.,, et al. "Unsupervised Machine Learning Applied to Scanning Precession Electron Diffraction Data." Advanced Structural and Chemical Imaging, vol. 5, no. 1, Springer International Publishing, 2019, doi: 10.1186/s40679-019-0063-3

  • Alexander Stuart Eggeman, et al. "Scanning transmission electron diffraction methods", Acta Cryst. . B75, 475–484, 2019, doi: 10.1107/S2052520619006723

  • I MacLaren, et al. "Detectors—The ongoing revolution in scanning transmission electron microscopy and why this important to material characterization", 2020, doi: https://aip.scitation.org/doi/abs/10.1063/5.0026992

  • GW Paterson, et al. "Fast Pixelated Detectors in Scanning Transmission Electron Microscopy. Part II: Post-Acquisition Data Processing, Visualization, and Structural Characterization", 2020, doi: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/fast-pixelated-detectors-in-scanning-transmission-electron-microscopy-part-ii-postacquisition-data-processing-visualization-and-structural-characterization/6B475CC18BACF288548A414344377D34

  • H Zhao, et al. "Geometrical constraints on the bending deformation of Penta-twinned silver nanowires", 2020, doi: https://doi.org/10.1016/j.actamat.2019.11.058

  • Zhao, H.,, et al. "Geometrical Constraints on the Bending Deformation of Penta-Twinned Silver Nanowires." Acta Materialia, vol. 185, Elsevier Ltd, pp. 110–18, 2020, doi: 10.1016/j.actamat.2019.11.058

  • Ian MacLaren, et al. "A Comparison of a Direct Electron Detector and a High-Speed Video Camera for a Scanning Precession Electron Diffraction Phase and Orientation Mapping", Microscopy and Microanalysis , 1–7, 2020, doi: 10.1017/S143192762002441

  • Shane J. McCartan, et al. "Correlative chemical and structural nano-characterization of a pseudo-binary 0.75Bi (Fe0.97Ti0.03)O3–0.25BaTiO3 ceramic", 2020, doi: 10.1111/JACE.17599

  • Loïc Henry, et al. "Studying phase change memory devices by coupling scanning precession electron diffraction and energy dispersive X-ray analysis", Acta Materialia 201 72-78, 2020, doi: 10.1016/j.actamat.2020.09.033

  • J Jeong, et al. "Automated crystal orientation mapping by precession electron diffraction assisted four-dimensional scanning transmission electron microscopy (4D-STEM) using a …", 2021, doi: https://arxiv.org/abs/2102.09711

ASTAR INSTRUMENTATION & TECHNIQUES

ASTAR VDF (VIRTUAL DARK FIELD) AMORPHOUS DETECTION

ASTAR BATTERIES & ENERGY

ASTAR HOLOGRAPHY

  • Cantu-Valle, J.,, et al. "Mapping the Magnetic and Crystal Structure in Cobalt Nanowires." Journal of Applied Physics, vol. 118, no. 2,, 2015, doi: 10.1063/1.4923745

  • E Ortega, et al. "In-situ magnetization/heating electron holography to study the magnetic ordering in arrays of nickel metallic nanowires", 2018, doi: https://aip.scitation.org/doi/abs/10.1063/1.5007671

  • E Ortega, et al. "In-situ magnetization/heating electron holography to study the magnetic ordering in arrays of nickel metallic nanowires", 2018, doi: https://aip.scitation.org/doi/abs/10.1063/1.5007671

  • Ortega, E.,, et al. "In-Situ Magnetization/Heating Electron Holography to Study the Magnetic Ordering in Arrays of Nickel Metallic Nanowires." AIP Advances, vol. 8, no.5,pp.1–5, 2018, doi: 10.1063/1.5007671

  • I.M.Andersen, et al. "Exotic transverse-vortex magnetic configurations in CoNi Nanowires" ACS Nano, 2018, doi: 10.1021/acsnano.9b07448

  • IM Andersen, et al. "Field tunable three-dimensional magnetic nanotextures in cobalt-nickel nanowires", 2021, doi: https://doi.org/10.1103/PhysRevResearch.3.033085

ASTAR METALLURGY & PLASTICITY

ASTAR MINERALS

  • Verezhak, M.,, et al. "ACOM-TEM Analysis of the Effect of Heating on the Mineral Nanocrystals in Bone." European Microscopy Congress : Proceedings, vol. 172, no. 1, pp. 734–35, 2016, doi: 10.1002/9783527808465.emc2016.6109

  • M Verezhak - 2016 - tel.archives-ouvertes.fr, et al. "Caractérisation multi-échelle du minéral osseux: apport de l'imagerie structurale par contraste de diffraction des rayons X et d'électrons", 2016, doi: https://tel.archives-ouvertes.fr/tel-01625784/

  • PH Sciau - Advances in Imaging and Electron Physics, et al. "Transmission electron microscopy: emerging investigations for cultural heritage materials", 2016, doi: https://www.sciencedirect.com/science/article/pii/S107656701630091X

  • Roqué Rosell, J.,, et al. "Au Crystal Growth on Natural Occurring Au—Ag Aggregate Elucidated by Means of Precession Electron Diffraction (PED)." Journal of Crystal Growth, vol. 483, pp. 228–35, 2018, doi: 10.1016/j.jcrysgro.2017.11.031

  • Nzogang, B. C.,, et al. "Characterization by Scanning Precession Electron Diffraction of an Aggregate of Bridgmanite and Ferropericlase Deformed at HP-HT." Geochemistry, Geophysics, Geosystems, vol. 19, no. 3, pp. 582–94, 2018, doi: 10.1002/2017GC007244

  • Addad, A.,, et al. "Anhydrous Phase B: Transmission Electron Microscope Characterization and Elastic Properties." Geochemistry, Geophysics, Geosystems, vol. 20, no. 8, pp. 4059–72, 2019, doi: 10.1029/2019GC008429

  • A Addad, et al. "Anhydrous phase B: Transmission electron microscope characterization and elastic properties", 2019, doi: https://doi.org/10.1029/2019GC008429

  • B. Malvoisin, et al. "Nanostructure of serpentinisation products: Importance for water transport and low-temperature alteration", 2021, doi: https://www.sciencedirect.com/science/article/abs/pii/S0012821X21004672?via%3Dihub

ASTAR NANOSTRUCTURES

  • S Rouvimov, et al. "Automated crystal orientation and phase mapping of iron-oxide nanocrystals in a transmission electron microscope", 2009, doi: DOI: 10.1109/ISDRS.2009.5378049

  • Liu, X.,, et al. "The Five-Parameter Grain Boundary Character Distribution of Nanocrystalline Tungsten." Scripta Materialia, vol. 69, no. 5, Acta Materialia Inc., pp. 413–16, 2013, doi: 10.1016/j.scriptamat.2013.05.046

  • Voliani, V.,, et al. "Texture and Phase Recognition Analysis of _-NaYF4 Nanocrystals." Journal of Physical Chemistry C, vol. 118, no. 21, pp. 11404–08, 2014, doi: 10.1021/jp5025872

  • Kobler, A.,, et al. "Nanotwinned Silver Nanowires: Structure and Mechanical Properties." Acta Materialia, vol. 92, pp. 299–308, 2015, doi: 10.1016/j.actamat.2015.02.041

  • Santiago, U.,, et al. "A Stable Multiply Twinned Decahedral Gold Nanoparticle with a Barrel-like Shape." Surface Science, vol. 644, Elsevier B.V., pp. 80–85, 2016, doi: 10.1016/j.susc.2015.09.015

  • Consonni, V.,, et al. "Identifying and Mapping the Polytypes and Orientation Relationships in ZnO/CdSe Core-Shell Nanowire Arrays." Nanotechnology, vol. 27, no. 44, IOP Publishing,, 2016, doi: 10.1088/0957-4484/27/44/445712

  • Sanchez, J. E.,, et al. "Structural Analysis of the Epitaxial Interface Ag/ZnO in Hierarchical Nanoantennas." Applied Physics Letters, vol. 109, no. 15, pp. 2–6, 2016, doi: 10.1063/1.4964719

  • U Santiago, et al. "A stable multiply twinned decahedral gold nanoparticle with a barrel-like shape", 2016, doi: https://doi.org/10.1016/j.susc.2015.09.015

  • Mendoza-Cruz, R.,, et al. "Evaporation of Gold on NaCl Surfaces as a Way to Control Spatial Distribution of Nanoparticles: Insights on the Shape and Crystallographic Orientation." Crystal Growth and Design, vol. 17, no. 11, pp. 6062–70, 2017, doi: 10.1021/acs.cgd.7b01158

  • Wang, K.,, et al. "Morphologies of Tungsten Nanotendrils Grown under Helium Exposure." Scientific Reports, Nature Publishing Group, vol. 7, 42315, 2017, doi: 10.1038/srep42315

  • Sanchez, J. E.,, et al. "Silver/Zinc Oxide Self-Assembled Nanostructured Bolometer." Infrared Physics and Technology, vol. 81, pp. 266–70, 2017, doi: 10.1016/j.infrared.2017.01.019

  • Wang, Y.,, et al. "Solution Growth of Ultralong Gold Nanohelices." ACS Nano, vol. 11, no. 6, pp. 5538–46, 2017, doi: 10.1021/acsnano.7b00710

  • AS Eggeman, et al. "In-Situ Bending and Structural Characterization of Penta-Twinned Silver Nanowires", 2019, doi: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/insitu-bending-and-structural-characterization-of-pentatwinned-silver-nanowires/93C572D3FBA2A424C488BE655FC00AE6

  • Arturo Ponce, et al. "Advances in the electron diffraction characterization of atomic clusters and nanoparticles", Nanoscale Advances,, 2020, doi: 10.1039/d0na00590h

  • A Ponce, et al. "Advances in the electron diffraction characterization of atomic clusters and nanoparticles", 2021, doi: https://doi.org/10.1039/D0NA00590H

ASTAR THIN FILMS, MULTILAYERS, NANOWIRES

ASTAR ATOM PROBE

ASTAR IN SITU / ASTAR HOT

ASTAR IN SITU STRAIN

ASTAR IN SITU ULTRAFAST TEM

  • Kulovits, A.,, et al. Revealing the Transient States of Rapid Solidification in Aluminum Thin Films Using Ultrafast in Situ Transmission Electron Microscopy." Philosophical Magazine Letters, vol. 91, no. 4, pp. 287–96, 2011, doi: 10.1080/09500839.2011.558030

  • McKeown, J. T.,, et al. "In Situ Transmission Electron Microscopy of Crystal Growth-Mode Transitions during Rapid Solidification of a Hypoeutectic Al-Cu Alloy." Acta Materialia, vol. 65, pp. 56–68, 2014, doi: 10.1016/j.actamat.2013.11.046

  • Reed, B. W.,, et al. "Temperature-Driven Disorder-Order Transitions in 2D Copper-Intercalated MoO 3 Revealed Using Dynamic Transmission Electron Microscopy." 2D Materials, vol. 1, no. 3, pp. 1–16, 2014, doi: 10.1088/2053-1583/1/3/035001