MINERALS-ZEOLITES-MOFS LITERATURE :

    • Gemmi, M., et al. "A New Hydrous Al-Bearing Pyroxene as a Water Carrier in Subduction Zones." Earth and Planetary Science Letters, vol. 310, no. 3–4, pp.422–28, 2011, doi: 10.1016/j.epsl.2011.08.019

    • Bellussi, G., et al. "ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity." Angewandte Chemie – International Edition, vol. 51, no. 3, pp.666–69, 2011, doi: 10.1002/anie.201105496

    • Jiang, J., et al. "Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43." Science, vol. 333, no. 6046, pp. 1131–34, 2011, doi: 10.1126/science.1208652

    • Mugnaioli, E., et al. "Ab Initio Structure Determination of Vaterite by Automated Electron Diffraction." Angewandte Chemie – International Edition, vol. 51, no. 28, pp.7041–45, 2012, doi: 10.1002/anie.201200845

    • Feyand, M., et al. "Automated Diffraction Tomography for the Structure Elucidation of Twinned, Sub-Micrometer Crystals of a Highly Porous, Catalytically Active Bismuth Metal-Organic Framework." Angewandte Chemie – International Edition, vol. 51, no. 41, pp. 10373–76, 2012, doi: 10.1002/anie.201204963

    • Gemmi, M., et al. "Structure of the New Mineral Sarrabusite, Pb 5CuCl 4(SeO 3) 4, Solved by Manual Electron-Diffraction Tomography." Acta Crystallographica Section B: Structural Science, vol. 68, no. 1, pp. 15–23, 2012, doi: 10.1107/S010876811104688X

    • López-Marino, S., et al. "ZnSe Etching in Zn-Rich Cu2ZnSnSe4_: An Oxidizing Route for Improvement of Solar Cell Efficiency." Chemistry, A European Journal, vol. 19,no.44,pp.14814–22, 2013, doi: 10.1002/chem.200

    • Plásil, J., et al. "Crystal Structure of Lead Uranyl Carbonate Mineral Widenmannite: Precession Electron-Diffraction and Synchrotron Powder-Diffraction Study." American Mineralogist, vol. 99, no. 2–3, pp. 276–82, 2014, doi: 10.1515/am.2014.4671

    • Cora, I., et al. "Electron Crystallographic Study of a Kaolinite Single Crystal." Applied Clay Science, vol. 90, Elsevier B.V., pp. 6–10, 2014, doi: 10.1016/j.clay.2013.12.034

    • Mugnaioli, E., et al. "Evidence of Noncentrosymmetry of Human Tooth Hydroxyapatite Crystals." Chemistry – A European Journal, vol. 20, no. 23, pp. 6849–52, 2014, doi: 10.1002/chem.201402275

    • Roussel, P., et al. "Sr4Ru6ClO18, a New Ru4+/5+ Oxy-Chloride, Solved by Precession Electron Diffraction: Electric and Magnetic Behavior." Journal of Solid State Chemistry, vol. 212, Elsevier, pp. 99–106, 2014, doi: 10.1016/j.jssc.2014.01.012

    • Koch-Müller, M., et al. "Synthesis of a Quenchable High-Pressure Form of Magnetite (h-Fe3O4) with Composition Fel(Fe2+0.75Mg0.26)Fe2(Fe3+0.70Cr0.15Al0.11Si0.04)2O4." American Mineralogist, vol. 99, no. 11–12, pp. 2405–15, 2014, doi: 10.2138/am-2014-4944

    • Capitani, G. C., et al. "The Bi Sulfates from the Alfenza Mine, Crodo, Italy: An Automatic Electron Diffraction Tomography (ADT) Study." American Mineralogist, vol. 99, no. 2–3, pp. 500–10, 2014, doi: 10.1515/am.2014.4446

    • Juraj Majzlan, et al. "Crystal structure of Fe2(AsO4)(HAsO4)(OH)(H2O)3, a dehydration product of kankite", Eur. J. Mineral. PrePub Article, PrePub, 2015, doi: 10.1127/ejm/2015/0027-2495

    • Gennaro Ventruti, et al. "A structural study of cyanotrichite from Dachang by conventional and automated electron diffraction", Phys Chem Minerals, 2015, doi: 10.1007/s00269-015-0751-z

    • Gemmi, M., et al. "Electron Diffraction Determination of 11.5 Å and HySo Structures: Candidate Water Carriers to the Upper Mantle." American Mineralogist, vol. 101, no. 12, pp. 2645–54, 2016, doi: 10.2138/am-2016-5722

    • Iezzi, G., et al. "Solid Solution along the Synthetic LiAISi2O6-LiFeSi2O6 (Spodumene-Ferri-Spodumene) Join: A General Picture of Solid Solutions, Bond Lengths, Lattice Strains, Steric Effects, Symmetries, and Chemical Compositions of Li Clinopyroxenes." American Mineralogist, vol. 101, no. 11, pp. 2498–513, 2016, doi: 10.2138/am-2016-5784

    • Simancas, J., et al. "Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58." Journal of the American Chemical Society, vol. 138, no. 32, pp. 10116–19, 2016, doi: 10.1021/jacs.6b06394

    • Mugnaioli, E., et al. "Determination of Very Beam-Sensitive Zeolite ITQ-57 by Energy-Filtered Timepix Data." Acta Crystallographica Section A Foundations and Advances, vol. 73, no. a2, pp. C64–C64, 2017, doi: 10.1107/s2053273317095067

    • Ma, Y., et al. "Electron Crystallography for Determining the Handedness of a Chiral Zeolite Nanocrystal." Nature Materials, vol. 16, no. 7, pp. 755–59, 2017, doi: 10.1038/nmat4890

    • Gemmi, M., et al. "Structural Model of Cowlesite by Fast Electron Diffraction Tomography." Acta Crystallographica Section A Foundations and Advances, vol. 73, pp. C999–C999, 2017, doi: 10.1107/s2053273317085758

    • Rozhdestvenskaya, I. V., et al. "The Structure of Denisovite, a Fibrous Nanocrystalline Polytypic Disordered ‘very Complex’ Silicate, Studied by a Synergistic Multi-Disciplinary Approach Employing Methods of Electron Crystallography and X-Ray Powder Diffraction." IUCrJ, vol. 4, no. 100, International Union of Crystallography, pp. 223–42, 2017, doi: 10.1107/S2052252517002585

    • Németh, P., et al. "A Nanocrystalline Monoclinic CaCO3 Precursor of Metastable Aragonite." Science Advances, vol. 4, no. 12, pp. 1–7, 2018, doi: 10.1126/sciadv.aau6178

    • Portolés-Gil, N., et al. "Crystalline Curcumin BioMOF Obtained by Precipitation in Supercritical CO2 and Structural Determination by Electron Diffraction Tomography." ACS Sustainable Chemistry and Engineering, vol. 6, no. 9, pp.12309–19, 2018, doi: 10.1021/acssuschemeng.8b02738

    • Rhauderwiek, T., et al. "Highly Stable and Porous Porphyrin-Based Zirconium and Hafnium Phosphonates-Electron Crystallography as an Important Tool for Structure Elucidation." Chemical Science, vol. 9, no. 24, pp. 5467–78, 2018, doi: 10.1039/c8sc01533c

    • H.Petersen, et al. "An average structure model of the intermediate phase between sodalite and cancrinite" Z. Kristallogr., 2018, doi: 10.1515/zkri-2018-2114

    • Mugnaioli, E. and Mauro Gemmi, et al. "Single-Crystal Analysis of Nanodomains by Electron Diffraction Tomography: Mineralogy at the Order-Disorder Borderline." Zeitschrift Fur Kristallographie – Crystalline Materials, vol. 233, no. 3–4, pp.163–78, 2018, doi: 10.1515/zkri-2017-2130

    • Bieseki, L., et al. "Synthesis and Structure Determination via Ultra-Fast Electron Diffraction of the New Microporous Zeolitic Germanosilicate ITQ-62." Chemical Communications, vol. 54, no. 17, pp. 2122–25, 2018, doi: 10.1039/c7cc09240g

    • Roqué, J., et al. "Structural Characterization and Ab-Initio Resolution of Natural Occurring Zaccariniite (RhNiAs) by Means of Precession Electron Diffraction." Microchemical Journal, vol. 148, no. December Elsevier, pp. 130–40, 2018, doi: 10.1016/j.microc.2019.04.071

    • B.Rondeau, et al. "Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompanying lazulite from Mt. Ibity, Madagascar: an example of structural characterization from dynamical refinement of precession electron diffraction data on submicrometre sample" Eur. J. Mineral. 31, 379–388, 2019, doi: 10.1127/ejm/2019/0031-2817

    • Lanza, A. E., et al. "Daliranite, PbHgAs 2 S 5: Determination of the Incommensurately Modulated Structure and Revision of the Chemical Formula." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 75, pp. 711–16, 2019, doi: 10.1107/S2052520619007340

    • Bodach, A., et al. "Electron Diffraction Tomography and X-Ray Powder Diffraction on Photoredox Catalyst PDI." CrystEngComm, vol. 21, no. 15, Royal Society of Chemistry,pp.2571–75, 2019, doi: 10.1039/C8CE02026D

    • Campanale, F., et al. "Evidence for Subsolidus Quartz-Coesite Transformation in Impact Ejecta from the Australasian Tektite Strewn Field." Geochimica et Cosmochimica Acta, vol. 264, The Author(s), pp. 105–17, 2019, doi: 10.1016/j.gca.2019.08.014

    • Benjamin Rondea, et al. "Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompanying lazulite from Mt. Ibity, Madagascar: an example of structural characterization from dynamical refinement of precession electron diffraction data on sub-micrometre sample", Eur. J. Mineral. 31, 379–388, 2019, doi: 10.1127/ejm/2019/0031-2817

    • S Plana-Ruiz, et al. "Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement", 2020, doi: https://www.sciencedirect.com/science/article/pii/S0304399119303663

    • Huang, Z., et al. "Can 3D Electron Diffraction Provide Accurate Atomic Structures of Metal-Organic Frameworks?" Faraday Discussions, pp. 0–14, 2020, doi: 10.1039/d0fd00015a

    • A.Mayoral, et al. "Direct atomic level imaging of Zeolites: Oxygen, Na in Na-LTA and Fe in Fe-MFI" Angew. Chem. Int. Ed. 10.1002/anie.202006122, 2020, doi: 10.1002/anie.202006122

    • B.Q.Lu, et al. "Introducing the crystalline phase of dicalcium phosphate monohydrate" NATURE COMMUNICATIONS | 11:1546, 2020, doi: 10.1038/s41467-020-15333-6

    • Y.Krusiak, et al. "New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy"IUCrJ . 7, 522–534, 2020, doi: 10.1107/S2052252520003991

    • Tu Sun, et al. "Direct-Space Structure Determination of Covalent Organic Frameworks from 3D Electron Diffraction Data", Angew. Chem. Int. Ed.,, 2020, doi: 10.1002/anie.202009922

    • Donghui Jo, et al. "PST-24: A Zeolite with Varying Intracrystalline Channel Dimensionality’, Angewandte Chemie International Edition,, 2020, doi: 10.1002/anie.202007804

    • Isabella Pignatelli, et al. "The effect of the starting mineralogical mixture on the nature of Fe-serpentines obtained during hydrothermal synthesis at 90°C", Clays and Clay Minerals 23 Sept, 2020, doi: 10.1007/s42860-020-00080-y

    • Zhehao Huang, et al. "Three-dimensional electron diffraction for porous crystalline materials: structural determination and beyond", The Royal Society of Chemistry, 2020, doi: 10.1039/d0sc05731b

    • Maxime Debost, et al. "Synthesis of Discrete CHA Zeolite Nanocrystals without Organic Templates for Selective CO2 Capture", Angew. Chem. Int. Ed. 59, 23491–23495, 2020, doi: 10.1002/anie.202009397

    • Jörg Fritz, et al. "Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments", American Mineralogist, Volume 105, pages 1704–1711, 05.00, 2020, doi: 10.2138/am-2020-7393

    • Jordi Rius, et al. "Structural study of decrespignyite-(Y), a complex yttrium are earth copper carbonate chloride, by three-dimensional electron and synchrotron powder diffraction", Eur. J. Mineral., 32, 545–555,, 2020, doi: 10.5194/ejm-32-545-2020

    • Fahui Xiong, et al. "Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for super-reduced mantle-derived fluids?", Eur. J. Mineral., 32, 557–574,, 2020, doi: 10.5194/ejm-32-557-2020

    • Enrico Mugnaioli, et al. "The structure of kaliophilite KAlSiO4, a long-lasting crystallographic problem", IUCrJ . 7, 1070–108, 2020, doi: 10.1107/S2052252520012270

    • Zhehao Huang, et al. "Can 3D electron diffraction provide accurate atomic structures of metal – organic frameworks?", The Royal Society of Chemistry, 2020, doi: 10.1039/d0fd00015a

    • Sven Hovmoller, et al. "Twinning and intertwined microcrystals in an intriguing, yet elusive, mineral", IUCrJ . 7, 951–952, 2020, doi: 10.1107/S2052252520014293

    • Enrico Mugnaioli, et al. "Electron Diffraction on Flash-Frozen Cowlesite Reveals the Structure of the First Two-Dimensional Natural Zeolite", ACS Cent. Sci. 6, 1578-158, 2020, doi: 10.1021/acscentsci.9b01100

    • Elina Kapaca, et al. A journey towards complete structure determination of zeolites by electron crystallography methods", Doctoral Thesis in Inorganic Chemistry, Stockholm, 2020, doi:

    • Stefano Toso, et al. "Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures", J. Am. Chem. Soc. 142, 10198_10211, 2020, doi: 10.1021/jacs.0c03577

    • Gennaro Ventruti, et al. "High_temperature study of basic ferric sulfate, FeOHSO4", Physics and Chemistry of Minerals 47:43, 2020, doi: 10.1007/s00269-020-01113-7

    • Rohit Kumar Dev and Parashuram Mishra, et al. "Synthesis and ab initio Determination of Bi1.25 V0.123 Ca 0.245 N1.24 O8 cubic structure via powder X-ray diffraction data", World Journal of Advanced Research and Reviews, 07(03), 142–154, 2020, doi: 10.30574/wjarr.2020.7.3.0333

    • Zhehao Huang, et al. "3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic Frameworks", Coordination Chemistry Reviews 427 213583, 2021, doi: 10.1016/j.ccr.2020.213583

    • Gwladys Steciuk, et al. "Hydrogen disorder in kaatialaite Fe[AsO2(OH)2]5H2O from Ja´chymov, Czech Republic: determination from low-temperature 3D electron diffraction", IUCrJ 8, 2021, doi: 10.1107/S2052252520015626

    To download the content of the Webinar, please fill out the following form: