The use of Precession Diffraction for in situ Cross-correlative microscopy

Prof. Greg Thomson, University of Alabama


In this webinar, Prof Greg Thomson from the University of Alabama will present his work with Cross correlative PED. With the ever growing importance for understanding nanoscale phenomena, the ability to quantify the material structure at the appropriate length scale is important in ultimately elucidating underlying mechanisms. Scanning Precession (SPED) electron diffraction in quantifying the green texture and grain boundary character is correlated to 2 two examples: in the first case study, its impact in understanding nanoscale deformation is described. Here, a multilayered crystalline and amorphous multilayer stack is subjected to Nano-indentation using SPED the mechanical induced grain growth in the crystalline layers is capture along with grain rotation. Using Finite element modeling, the loading response in the nanostructure is then able to be directly linked to the scanning PED outcomes. In the second example the use of SPED is cross- correlated to atom probe tips to reveal the grain boundary specificity of solute segregatio enabling verification and validation of atomistic computational models.